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Integration of Distributed & High Performance Computing
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Materials Data Science Enabled by Integration of Distributed and High Performance Computing: Accelerating 
Time to Science sans Human Interaction

5

  Modern materials science research produces petabyte-scale, heterogeneous datasets that span multiple 
modalities. Coherently integrating such data presents a significant unsolved challenge not addressed by 
current high performance computing approaches. CRADLE, an infrastructure and framework tackles 
these materials data science challenges in several ways: 1) scaling to handle large, diverse datasets 
through distributed computing and vertical scaling; 2) supporting the full data lifecycle from data 
ingestion to model deployment; 3) providing accessible tools that enable novice to experienced users to 
construct end-to-end machine learning pipelines. 
   We demonstrate “CRADLE analytics” on terabyte-scale multi-modal data at scale through four 
exemplar cases: 1) photovoltaic (PV) power time series imputation using generative graph neural 
networks given billions of power measurements, 2) integrating geospatial data to track fertilizer runoff, 
3) X-ray Diffraction (XRD) analysis of in-situ movies, and 4) crack/precipitate analysis with summary 
graph generation on timeseries X-ray Computed Tomography (XCT) creep test datasets.
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SDLE Research Center: 
Develops Materials Data Science Solutions & Leading Edge Materials Science Research

Across a broad range of research projects and centers

SDLE Core Facility: Equipment, Tools, Outdoor Testing, CRADLE Computing, Benchmark Datasets, 

SDLE as a Data Science Incubator and Foundation

“SDLE Research Center” & Materials Data Science

3

Create Cross-cutting Solutions Based in Materials Data Science

FAIRifcation, Domain Ontologies, Study Protocols, Global Geospatial Repository, netSEM, PVimage, ddiv,.... 

MDS-RELY CASFER ERC MDS3-COE PV, Edifice, EERS

SDLE’s Research Centers and Funded Projects

Common Research Analytics & Data Lifecycle Environment 
CRADLE Computing & Analytics

● Integrate Distributing Computing
○ “Scaled Out Computing”

● With High Performance Computing
○ “Scaled Up Computing”

Agile Team Science
● Agile Manifesto for Software Development

○ Slack, Jira KanBan, Confluence, Bitbucket
● Use 4 Month Long Cross-cutting Sprints

https://mds3-coe.com
http://sdle.case.edu/
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SDLE Research Center: Acknowledgements

4

25 UG  26 GR  4 Postdocs  3 Staff  20 Faculty

https://mds3-coe.com
http://sdle.case.edu/


MDS3 COE, SDLE Research Center, Roger H. French © 2023  https://mds3-coe.com  http://sdle.case.edu  DE-NA0004104      

Agile Team Science
Useful “Home Page” for ATS: https://start.atlassian.com/ 

Confluence Spaces
● SDLE Lab Meetings
● MDS3 Meetings
● SDLE Wiki
● Collaborators 

Jira KanBan Boards
● Admin Boards
● Research Packages Boards
● Project Boards

Bitbucket (Git) Repositories
● Project Repositories
● Research Package Repositories
● Manuscript LaTeX Repositories
● Thesis LaTeX Repositories

SDLE’s Research Centers and Funded Projects

SDLE Research Center: 
Develops Materials Data Science Solutions & Leading Edge Materials Science Research

Across a broad range of research projects and centers

SDLE Core Facility: Equipment, Tools, Outdoor Testing, CRADLE Computing, Benchmark Datasets 

SDLE as a Data Science Incubator and Foundation

6

Create Cross-cutting Solutions Based in Materials Data Science

MDS-RELY CASFER ERC MDS3-COE PV, Edifice, EERS

SLACK Team Messaging

https://mds3-coe.com
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https://docs.google.com/spreadsheets/d/1L_GtLStBAhqINDj8HXUVUf-Rha8-Z8-1QGefov8wG9U/edit#gid=0
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The vision of the MDS3 COE

● Develop, demonstrate, and deploy 
○ Novel Materials Data Science (MDS) tools

● Frameworks, codes, and computing infrastructure
○ “Research Packages”

● To advance our understanding of
○ Materials degradation 
○ Parts Design and Optimization for Fabrication
○ Failure of materials, parts, and subsystems

● Using novel computer science and data  science

● Empowering current NNSA/NSE employees

● Delivering a pipeline of diverse, 
data enabled workforce (DEW) for the future

7
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MDS3 COE Structure

MDS3 Center of Excellence organizational structure. 
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MDS3 COE’s focus: Initial NNSA Programs & Collaborations

Minority Serv. 
Institutions

Historically Black 
Colleges, Univ.

Data Enabled 
Workforce

Diversity, Equity, 
Inclusion
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Workforce Pipeline MDS Courses

Staff 
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Aging & 
Lifetime, NA115
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EMSE SDLE Research Center

Teaching - DSCI

- Applied Data Science
- Materials Data Science

CWRU - EMSE

- MDS3

- MDS-Rely
 

- CASFER

- PV Reliability
- Geospatial

Courses:
- Undergraduate
- Graduate

The Components of our (MDS3) Data-enabled Workforce Pipeline

11

PITT (MDS-Rely)

- Undergrad
- Graduate
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sMDS3

4 students

MDS-Rely
2 students

CASFER
1 student (REUs) How to create a new pipeline

For Data-enabled Workforce

To supply the needs of 
● DOE Labs Text 
● And US Industry

CWRU NorthStar Partners

UCF (MDS3)

- Undergrad
- Graduate

UTRGV
- Undergrad
- Graduate

Tuskegee
- Undergrad
- Graduate

ACS Project Seed 
High Schools:
- Cleveland Metropolitan 

School District
- St. Martin de Porres
- Heights High

Employment at 
DOE Labs

DOE Lab Internships
 Summer & Year Round
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MDS3 Data to Knowledge, Knowledge to Workflow Framework

Raw Data

images(HEXRD/XCT), 
video(AFM)
historical data, 
in-situ data, ex-situ data, 
experiments, scripts… 

Thesaurus, 
Taxonomies  
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Metadata 
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Objects, 
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Relations

FAIRification
Knowledge
Extraction 
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MDS3-
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CRADLE

MD3-KN (Knowledge 
Network of Networks)

Aging & Lifetime 
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Production Modern. 
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Stockpile Surv. 
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Knowledge
DeepMDS3

ML/AI models, Rules, 
Policies, Provenance…

MDS3-WF

MDS3-Track

MDS3-Assy.

Knowledge to Workflow 
Framework (MD3-K2Flow)

Influential model: “scene 
prediction for crystal. Kinetics 

of fluoropolymers” (Proj A)

Insights
Age & Lifetime Adv. Manu

Prod. Modern. Stockpile. Surv.

Data to Knowledge 
Framework (MD3-D2K)

Workflow
Declaration &
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?
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CASFER : A NSF ERC ( Engineering Research Center)

1313
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CASFER will enable 
● Resilient & sustainable food 

production 
● By developing 

○ Next generation, 
○ Modular, 
○ Distributed, & 
○ Efficient technology 

To capture, recycle & produce 
Nitrogen Based Fertilizers (NBFs)

Towards a nitrogen Circular Economy

14

End User
Farmers

CASFER Engineered 
System

Concentrated Animal 
Feeding Operation

(CAFOs)

Wastewater Treatment 
Plants (WWTPs) 

CASFER Mission
From Nitrogen Cycle 
Pollution to Nitrogen 

Circular Economy (NCE)  
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NSF Award# 2052776 / 2052662

The Center on Materials Data Science 
for Reliability and Degradation

Director, Laura S. Bruckman
Pitt Site Directory, Paul Leu
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MDS-Rely NSF Ind./Univ. Collab. Research Center (IUCRC)

16
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Polymers, Elastomers & Coatings
• Non-Invasive Detection of Defects during Coatings Manufacturing, Chris Wirth
• Predictive Framework to Indicate the Age of Plastics for Proper Recycling, Metin 

Karayilan, Divita Mathur, Sanmukh Kuppannagari
• Machine Learning Methods for Optimizing and Innovating Structural Color Paints 

and Coatings, Paul Leu, Oliver Hinder, Jungtaek Kim
Metals & Alloys

• Achieving Reliable Laser Powder Bed Fusion based Additive Manufacturing via 
Machine Learning of in-situ Optical Profilometry Monitoring Data, Xiayun Zhao

• Data-driven Analysis of Hydrogen-Degraded, Additive Manufactured Zircaloy, 
Markus Chmielus & Zachary Harris

Components, Devices & Systems
• Effects of Aerosol Jet Printing Parameters on the Lifetime Performance of 

Additively-Manufactured Flexible Circuits, Janet Gbur
• Enhancing Degradation Analysis and Failure Prediction through Modern Machine 

Learning Techniques, Satish Iyengar

MDS-Rely 2023/24 Research Portfolio

17
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CWRU Applied Data Science UG/Grad Program  
BUSINESS PARTNERS 
Accenture 
Cleveland Clinic 
Eaton Corporation 
Explorys 
FirstEnergy Corporation 
General Electric 
Humana 
IBM 
KeyBank 
KPMG LLP 

Medical Mutual of Ohio 
Medtronic 
Philips Healthcare 
Sherwin-Williams 
Company 
Siemens 
Teradata Corporation 
Timken Company 
University Hospitals 

http://www.bhef.com/publications/creating-minor-applied-data-science

18

AY 2014-15 AY 2015-16 AY 2016-17 AY 2017-18 AY 2018-19 AY 2019-20 AY 2020-21 AY 2021-22 AY 2022-23 Total

9 36 49 57 100 106 92 159 220 828

18
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Open Source, Open Data, Reproducible Research Tools For Science
Using Open Source tools

•R & Python coding 
•Git code versioning & collaboration
•Cross-Platform (Linux, Mac, Windows)
•LaTeX & Markdown

Reproducible Research
•Distribute Code & Datasets
•At time of paper publication
•Your research can be reproduced by others
•Others can build on your research and data

Use Agile Development Tools
•Slack team messaging
•Jira Cloud Issue Tracking
•BitBucket/GitHub/GitLab 

Build Packages for Science 
Use Package-based systems

•Rely on well-vetted Open Source Codes
R Packages

•Well vetted, with know package dependencies
•With Vignettes on Theory, & Use
•With Data Sets and Results for Validation

NetSEM on CRAN
Network Structural Equation Modeling

Kgc on CRAN
Köppen-Geiger Climate Zone Package

ddiv on CRAN
Data-driven I-V Feature Extraction

Performance Loss Rate Determination
IEA PVPS Task 13 PV Reliability

Suns-Voc from Time-Series I-V

Current mismatch

Uniform current

Recombination

https://mds3-coe.com
http://sdle.case.edu/
http://agilemanifesto.org/
https://cwru-sdle.atlassian.net/jira/your-work
https://cran.r-project.org/package=netSEM
https://cran.r-project.org/web/packages/kgc/index.html
https://cran.r-project.org/package=ddiv


MDS3 COE, SDLE Research Center, Roger H. French © 2023  https://mds3-coe.com  http://sdle.case.edu  DE-NA0004104      

CRADLE Analytics: Enable Sparse to Massive Data Analytics
Materials Data Science

 Distributed/High Performance Computing
 Coherent Data Lifecycle Environment

• Data & Modeling Stay Integrated
• Over years, Building on prior work

 Low Barriers for novice Data Scientists

Automated Data Analysis Pipelines
 Enable Terabyte Dataset Analysis

• Adv. Manu. Datastreams
• Beamline HEXRD
• Other Big (or Sparse) Datasets

Write-back All Models & Results
 Future Analysis Builds On Priors
 Datasets & AI/ML Models Get Smarter

Minimize Large Data Transfer
 Prefer In-place Analytics (Hadoop/Spark)

Focus on Fast/Efficient Modeling
 Such as high speed segmentation
 For Autonomous Driving

20
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The Challenges, & Opportunities, of AI/ML: Accelerating Time to Science

21

To develop AI/ML for Science, such as Materials Science
We have High Performance Computing (HPC)

● “Scaled Up” Computing: Works for Physics Simulation Modeling
○ But doesn’t handle massive datasets

Yet Big Tech uses Distributed Computing (DC)
● “Scaled Out” Computing: e.g. used by Google, Meta, etc.

AI/ML for Science needs D/HPC Computing
● Needs the integration of “Scaled Out & Scaled Up” Computing
● CRADLEtm: Common Research Analytics & Data Lifecycle Environment1

○ Automated pipelines, FAIRification2, Efficient Insights

In SDLE Res. Cntr.
● Dist. Compute

○ 2.5 Pb Cluster
○ 7 TB Ram
○ 1164 CPU Cores
○ 30 GPUs

■ 480 GPU VRAM
■ 384k Cuda Cores
■ 1.2k Tensor Cores

● High Perf. Compute
○ 7152 CPU Cores

● Nvidia AISC 8 DGX 
○ 2.5 Tb VRAM
○ 4 Tb RAM
○ 15 Tb nvme storage

Data Centric AI3 presents humans with a grand opportunity
● “Computational Inflection Point for Scientific Discovery”4

○ Augmenting human reasoning; Working alongside human researchers
○ Scientific investigations restructured around the “salient human tasks”

■ With computers handling the routine and onerous tasks
■ Supplementing our human capabilities

While decreasing reductionist approaches in scientific research
1. A. Khalilnejad, ry s;.,  “Automated Pipeline Framework for Processing of Large-Scale …,” PLOS ONE, 15, 12, p. e0240461, Dec. 2020.  
2. W. C. Oltjen et al., “FAIRification, Quality Assessment, and Missingness Pattern …, IEEE PVSC, Jun. 2022, pp. 0796–0801.
3. M. H. Jarrahi, et al., “The Principles of Data-Centric AI,” Commun. ACM, vol. 66, no. 8, pp. 84–92, Jul. 2023,
4. T. Hope, et al., “A Computational Inflection for Scientific Discovery,” Commun. ACM, vol. 66, no. 8, pp. 62–73, Jul. 2023, 

https://mds3-coe.com
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https://dx.doi.org/10.1109/PVSC48317.2022.9938523
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AI4Science: An inflection point for Science
DOE NNSA & DOE Office of Science

● Are individually funded by congress
● And working towards $2B for AI4Science

Both have noticed our MDS3 COE 
● As a demo of what the opportunity is

22
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sample

tool

data

Store in computer
Scientist

Locate metadata
Scientist

Analyse data
Scientist 

Results

Accumulate results
Scientist

Interpret Results
Scientist

Write paper

Share
 Analysis?

Share 
datasets?

An inflection point for science
Human-centered Investigations: 

● Constrained by human capacity
○ At multiple stages

Data-centric AI Investigations:
● Allow FAIR data, analysis, models 
● Enable AI data analyses 

○ sans human interaction

23

sample

tool

FAIR data

Data auto-ingested to 
CRADLE D/HPC

All data, metadata, models 
integrated & findable

Automated Analysis Pipelines 
AI, finds new data

AI Analytics: 
Models find Data to train on

Data find Models to train

Interpret Results in context of 
Scientific Investigation

Scientist

Ask new questions.
Design next Study Protocol

Scientist

FA
IR

 D
at
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ce
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ric

 
A

na
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Write paper
Share code

Data Models

Time 
science: 
years!

Time 
science: 
days!
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Outline: Common Research Analytics & Data Lifecycle Environment
CRADLE Computing & Analytics

● Hardware, Frameworks, Middleware & Automated Pipelines
● FAIRification: Making Data & Models FAIR

CRADLE Data Lifecycle
● Scientific Investigations, Study Protocols & Materials Data Science

Spatiotemporal-Graph (st-Graph) Learning
● Timeseries Imputation & Trend Estimation

Geospatial Data Science
● Eutrophication: Motion of Nitrogen Through Watersheds

Synchrotron 2D X-ray Diffraction HEXRD: Automated NN Analysis Pipelines
● “Scientist Ground Truth” Learning Approach
● Kinematic Diffraction Forward Model Learning

3.5D X-ray Computed Tomography: Pipelines & Spatiotemporal Feature Extraction 
● Observing Pitting Corrosion of Aluminum Wires
● Al:Mg Alloy: Stress Corrosion Cracking

Conclusions

https://mds3-coe.com
http://sdle.case.edu/
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CRADLE Computing & Analytics: 
Hardware

GS: Arafath Nihar1, Olatunde Akanbi1, Tommy Ciardi1, Tian Wang1

UG: Rachel Yamamoto1, Rounak Chawla1, Hayden Caldwell1, 
Faculty: Yinghui Wu1, Vipin Chaudhary1, Roger H. French1,2   

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

25

1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

https://mds3-coe.com
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Horizontal Scaling vs Vertical Scaling

26

Horizontal Scaling: 
● Add more machines 
● To increase capacity

Distributes workloads 
● Across multiple machines

Increases redundancy 
● And fault tolerance

Generally more cost-effective

https://mds3-coe.com
http://sdle.case.edu/
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Running in CWRU’s HPC
● Pioneer (RHEL8 OS)
● Markov (DSCI Teaching Cluster)

Dist. Comp. Frameworks
● Apache Hadoop, Hbase, Spark
● Apache Ozone, Impala, Ranger, etc
● JanusGraph, GraphX

Cloudera Data Platform
● Commercial supported distribution
● Of Apache Hadoop/Hbase/Spark/….

OnDemand Containerized Apps
● Using Ubuntu 20.04 OS

Able to train 100s 
of Deep Learning Models

CRADLE Compute Environment: Distributed & High Performance Computing
Common Research Analytics & Data Processing Environment

https://mds3-coe.com
http://sdle.case.edu/
https://app.diagrams.net/?page-id=3RLj5nnJpmep8nUyXMuN&scale=auto#G1nfZv5lQaosgQuG9XVa6hM2cEomtlB6Y3


MDS3 COE, SDLE Research Center, Roger H. French © 2023  https://mds3-coe.com  http://sdle.case.edu  DE-NA0004104      

CRADLE Hardware: HPC Scaling up

28

Pioneer HPC: 5912 cores
● 32 gpu nodes

Markov HPC:    1240 cores 
● 16 gpu nodes

One Compute Node
● Up to 40 cores 
● Up to 1Tb RAM memory
● Nvidia v100 
● Up to 32 GB of GPU VRAM

HPC Compute Model
● Lots of FLOPS
● But Limited, Expensive Data Storage

https://mds3-coe.com
http://sdle.case.edu/
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CRADLE Hardware: HPC Scaling up

29

Pioneer HPC: 5912 cores
● 32 gpu nodes

Markov HPC:    1240 cores 
● 16 gpu nodes

One Compute Node
● Up to 40 cores 
● Up to 1Tb RAM memory
● Nvidia v100 
● Up to 32 GB of GPU VRAM

HPC Compute Model
● Lots of FLOPS
● But Limited, Expensive Data Storage

Nvidia AISC: 32 integrated GPU nodes
● 4 Nvidia DGX Pods, of 8 A100 GPUs
● 2.56 Tb GPU VRAM
● 4 Tb of RAM memory
● 15 Tb NVME storage

https://mds3-coe.com
http://sdle.case.edu/
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CRADLE Hardware: Distributed Hadoop Scaling Out, for CRADLE 3.2

30

4 Name Nodes
● 224 Cores
● 2 Tb of RAM memory
● 21.6 Tb  Storage

15 Data Nodes
● 840 Cores
● 3.84 Tb of RAM memory
● 1.92 Pb of Storage TB
● 30 NVIDIA Ampere A2 GPU

= 1.95 Pb of storage 

CRADLE D/HPC
● Dist. Compute

○ 2.5 Pb Cluster
○ 7 TB Ram
○ 1164 CPU Cores
○ 30 GPUs

■ 480 GPU VRAM
■ 384k Cuda Cores
■ 1.2k Tensor Cores

● High Perf. Compute
○ 7152 CPU Cores

● Nvidia AISC 8-DGX 
○ 2.5 Tb VRAM
○ 4 Tb RAM
○ 15 Tb nvme storage

https://mds3-coe.com
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CRADLE Hardware: Distributed Hadoop Scaling Out, for CRADLE 3.2
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4 Name Nodes
● 224 Cores
● 2 Tb of RAM memory
● 21.6 Tb  Storage

15 Data Nodes
● 840 Cores
● 3.84 Tb of RAM memory
● 1.92 Pb of Storage TB
● 30 NVIDIA Ampere A2 GPU

= 1.95 Pb of storage 

CRADLE D/HPC
● Dist. Compute

○ 2.5 Pb Cluster
○ 7 TB Ram
○ 1164 CPU Cores
○ 30 GPUs

■ 480 GPU VRAM
■ 384k Cuda Cores
■ 1.2k Tensor Cores

● High Perf. Compute
○ 7152 CPU Cores

● Nvidia AISC 8-DGX 
○ 2.5 Tb VRAM
○ 4 Tb RAM
○ 15 Tb nvme storage

Current 2D-HEXRD Datasets
   from Don Brown @ LANL

•~ 21 Tb 
•~ 4.5 million HEXRD images
•  In-situ heating, texture, strain 
analysis of Ti-6Al-4V at CHESS, 

•Wire arc additive manufacturing 
of stainless steel etc.
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Distributed Computing: Cloudera Data Platform Distribution

32

Hadoop Distributed File System
● HDFS Storage

Apache Spark: 
● Unified analytics engine for 

large-scale data processing

Apache Impala: 
● Massively parallel processing 

SQL query engine 

Kerberos: 
● User authentication protocol 

https://mds3-coe.com
http://sdle.case.edu/
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CRADLE Computing: 
Frameworks, Middleware & Automated Pipelines

Web-based Access to Cloud & Softwares

GS: Arafath Nihar1, Olatunde Akanbi1, Tommy Ciardi1, Tian Wang1

UG: Rachel Yamamoto1, Rounak Chawla1, Hayden Caldwell1, 
Faculty: Yinghui Wu1, Vipin Chaudhary1, Roger H. French1,2   

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
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Combines Lab data (Spectra, Images, Videos etc.) 
With Geospatiotemporal Data (PV Power Plant Data)

Distributed & High Performance Computing: 
Petabyte Data Lake In A Petaflop HPC Environment

•In-place Analytics: Distributed Spark Analytics in Hadoop/HDFS/Hbase
•In-memory Data Extraction: To Separate HPC Compute Nodes

The “NoSQL” Database Abstraction of Hadoop/Hbase: RDF Triples

HBase RDF ‘Triple’

Value
(string or 

binary obj.)

Rowkey
(string)

Columnkey
(string)

1 2

3 4

5 6

1

5
2

3

4

6

1

5

2

3 4

6

Hu, Y., et al., “A Nonrelational Data Warehouse for the Analysis of Field & Lab Data From Multiple Heterogeneous Photovoltaic Test Sites.” IEEE JPV, 7, 1, 2017, 230–36. 
A. Khalilnejad, et al.,  Automated Pipeline Framework for Processing of Large-Scale Building Energy Time Series Data, PLOS ONE. 15 (2020) e0240461. 34
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Multimodal Hadoop Cluster for Heterogeneous Data

35

CRADLE’s Hadoop cluster prioritizes the scientific data workflow
● Leverages a unique combination of open source technologies
● To manage heterogeneous data at scale (Petabytes)
● Prioritizing multi-modality, reproducibility, and security

HDFS Base Storage

raw data lake for provenance 
and reproducibility

Multi-modal Storage

Low latency queries for 
heterogeneous data sets

Multi-modal Processing

Lightning fast Petabyte scale 
data pipelines

https://mds3-coe.com
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Example: Apache Sedona for Handling Geospatial Raster Data

36
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CRADLE Middleware

371https://slurm.schedmd.com/

Complex computational tools made easily accessible through simple Python & R interfaces

CRADLEsgis

Input 
coord and time

API call

clean / format

SDLEfleets

Submit 1000’s of compute jobs 
through a single function call

SDLEfleets

slurm jobs 
created

CRADLEtools

Apache tool wrapper for simple 
interactive queries

desired 
metadata

Example: 
return all 

power 
plants with 

weather 
data 

2018-2020

https://mds3-coe.com
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SDLEfleets Package: Fleets of ML Jobs

38

SLURM (Simple Linux Utility for Resource Management) 
● allocates and releases computational resources 
● when available to jobs in its queue

Drawbacks:
● User unfriendly for data scientists (requires proficiency with shell scripting)
● Difficult to scale
● No aggregate job status checking/error reporting

1https://slurm.schedmd.com/

SDLEfleets Package
● A scalable Python and R interface over Slurm 

○ for job fleet submission & management
● Key features:

○ Integrated with other HPC tools 
■ (pyCRADLEtools3/rCRADLEtools3)

○ Simple workflow
○ Containerized
○ Improved and aggregated logging (json)
○ Job requeue

https://mds3-coe.com
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Data Processing Infrastructure: A Data Analysis Pipeline (Python or R)

39

Nucleation & Growth of AlN Crystals
● 1 million images of Al/Ni Melt

CRADLE infrastructure
NoSQL database

• Apache HBase
Object storage

• Apache Ozone
HPC environment 

• Nvidia GPU acceleration for deep learning
Python/TensorFlow
[1] M. Adachi, S. Hamaya, D. Morikawa, B. G. Pierce, A. M. Karimi, Y. Yamagata, K. Tsuda, R. H. French, H 
Fukuyama, Temperature dependence of crystal growth behavior of AlN on Ni–Al using electromagnetic 
levitation and computer vision technique", Mat. Sci. in Semicon. Proc., 153, 2023, 107167, ISSN 1369-8001, 
https://doi.org/10.1016/j.mssp.2022.107167 .
[2] A. Khalilnejad, et al.,  “Automated Pipeline Framework for Processing of Large-Scale Building Energy Time 
Series Data,” PLOS ONE, p. e0240461, Dec. 2020, 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240461 . 
[3] Masayoshi Adachi et al., “In‐situ observation of AlN formation from Ni‐Al solution using an electromagnetic 
levitation technique,” J Am Ceram Soc, p. jace.16960, Jan. 2020, 
https://onlinelibrary.wiley.com/doi/abs/10.1111/jace.16960 .    

Hbase Tables

Lab Collaborator

CRADLE

CWRU HPC

images

metadata

results

 Python Tensorflow outputs
Storage
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FAIRification: Making {Meta}Data & Models FAIR 

GS: Alexander Harding Bradley1, Priyan Rajamohan1 
UG: Jiana Kambo1, Hyangmok Baek1

Postdoc: Erika I. Barcelos2

Faculty: Yinghui Wu1, Roger H. French1,2   

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
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Traditional Scientific Investigations versus FAIR Reproducible Science

 Today’s Research…
Each user defines 
their own “naming” 

convention

Metadata stored 
in log books

Data not findable 
by computers

No metadata 
description

  Data gets lost 
      or become non-reusable!

Research 
Question

Experiments/ 
Simulations

Data stored 
locally

Data shared by 
email

 Findable
● Should be findable by humans and computers
● Detailed descriptive metadata
● (Meta)data assigned to a globally unique and persistent identifier

 Accessible
● (Meta)data accessible even when data no longer available
● (Meta)data retrievable by their identifier using standardized protocol

 Interoperable
● (Meta)data use formal, accessible, shared, knowledge representation
● (Meta)data follows FAIR domain ontology & references other metadata

 Reusable
● (Meta)data are released with a clear & accessible data license
● (Meta)data meet domain-relevant community standards

41
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PDMco Mid-level Ontology

42

B. Bayerlein et al., “PMD Core Ontology: Achieving semantic interoperability in materials science,” Materials & Design, vol. 237, 
p. 112603, Jan. 2024, doi: 10.1016/j.matdes.2023.112603 
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“Bi-lingual” R & Python Package: With Common JSON-LD Domain Templates

43

FAIRmaterials Package website
● https://cwrusdle.bitbucket.io/ 

~ 30 Scientific Domain Ontologies
● Defined by OWL Files
● And 1 Combined OWL file

48 json-ld templates 
● For these domains

~ 30 domain documentation vignettes
● How to FAIRify for that domain

Towards automation  of 
JSON-LD & Ontology 
Creation and validation

● No existing tools for this purpose
○ Manual work 

● Now automating with RDFLib & PyLODE

https://mds3-coe.com
http://sdle.case.edu/
https://cwrusdle.bitbucket.io/
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/pyLODE
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CRADLE FAIRification & Data Science Workflow Pipeline

44

CRADLE CRADLE

FAIR FAIR

Analysis Modeling

Results Models

Datasets  shared on osf.io 
with the community

Open source tools to community

DATA
 Data ingested at 

CRADLE/HPC

FAIR Cycle
Of Science AI/ML!

https://mds3-coe.com
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Metadata and data are linked by unique ids 
● associated to the user’s ORCID 

Dataset generated from the results & postprocessing 
● stored in a dataset JSON-LD 

○ Metadata of the dataset
Models JSON-LD store modeling parameters 

● Images, Architecture, Cross Validation, model, etc

Linking Data in a Domain for Efficient Pipelining & Modeling

sample tool recipe results post processing

Data linked by orcid-uniqueIdentifier

orcid-idsample orcid-idtool orcid-idrecipe orcid-idresults orcid-id 
postprocessing

orcid-idresults orcid-idresults
orcid-idrecipe

orcid-idtool
orcid-idsample

Materials Science Domain
JSON-LD JSON-LD JSON-LD JSON-LD JSON-LD

Dataset

orcid-id dataset

JSON-LD

45

Models
JSON-LD

orcid-id model
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Development of Domain Ontologies: Knowledge Graphs

46

Apache HBase:  
● Data Storage and 
● Represented in RDF Triples 

Onotologies created in OWL language
● Builds on top of RDF
● Extends RDF for complex knowledge & reasoning
● Provides a more expressive language 

○ And larger vocabulary

Khalilnejad A, et al., Automated pipeline framework for processing of large-scale building energy time series data. PLoS ONE 2020 m15(12): e0240461. 
W. C. Oltjen, et al., “FAIRification, Quality Assessment, and Missingness Pattern Discovery for Spatiotemporal Photovoltaic Data,” IEEE PVSC, 2022.

Creation of Ontology-driven Knowledge Graphs  
● JanusGraph Distributed Database

○ Scalable graph database optimized for
■ storing and querying graphs 
■ containing hundreds of billions
■ of vertices and edges 
■ distributed across D/HPC CRADLE

https://mds3-coe.com
http://sdle.case.edu/
https://doi.org/10.1371/journal.pone.0240461
https://dx.doi.org/10.1109/PVSC48317.2022.993
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Development of Domain Ontologies: Knowledge Graphs

47

Apache HBase:  
● Data Storage and 
● Represented in RDF Triples 

Onotologies created in OWL language
● Builds on top of RDF
● Extends RDF for complex knowledge & reasoning
● Provides a more expressive language 

○ And larger vocabulary

Khalilnejad A, et al., Automated pipeline framework for processing of large-scale building energy time series data. PLoS ONE 2020 m15(12): e0240461. 
W. C. Oltjen, et al., “FAIRification, Quality Assessment, and Missingness Pattern Discovery for Spatiotemporal Photovoltaic Data,” IEEE PVSC, 2022.

RDFs is a cold watery coffee, 
while OWL is  a hot espresso

Creation of Ontology-driven Knowledge Graphs  
● JanusGraph Distributed Database

○ Scalable graph database optimized for
■ storing and querying graphs 
■ containing hundreds of billions
■ of vertices and edges 
■ distributed across D/HPC CRADLE

https://mds3-coe.com
http://sdle.case.edu/
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https://dx.doi.org/10.1109/PVSC48317.2022.993
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CRADLE Data Lifecycle:
Scientific Investigations, Study Protocols &

Materials Data Science

GS: Kristen Hernandez1, Hein Htet Aung1, Ayorinde Olatundei2, 
Arafath Nihar3, Olatunde Akanbi1, Tommy Ciardi3, Tian Wang3, 

UG: Rachel Yamamoto3, Rounak Chawla1, Hayden Caldwell3, 
Faculty: Anirban Mondal1, Laura S. Bruckman1 , Yinghui Wu2, 

Vipin Chaudhary3, Roger H. French1,2   

1. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
2. Department of Computer and Data Sciences, CWRU, Cleveland, OH
3. Department of Mathematics, Applied Mathematics, and Statistics, CWRU, Cleveland, OH
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CRADLE Frameworks: Enabling Materials Data Science

50

● Combined Distributed & High Perf. Computing
● Distributed Computing to reduce Data Motion
● Integrated AI Engines such as AISC
● Permanent Data Storage: To enable data curation
● “Low Barriers To Entry” Accessible Data Science Tools

https://mds3-coe.com
http://sdle.case.edu/
https://app.diagrams.net/?page-id=Cz8eQGEoU7dnSojKtDmB&scale=auto#G1sM29d_ti2IzA3To3XCbfVEFeS7bhf-qB
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A Containerized Environment for Researcher Ease of Use

51

Containerized environments enable:
● Researchers: To use CRADLE 

○ without extensive compute training
● Group: consistent tools/code packages

○  for an entire team 

Cloud based container building pipelines
● Ensures features and fixes 
● Are released to production

○ For the entire research group
● Users don’t need to manage dependencies

From a single source
● Using our Container Registry

https://mds3-coe.com
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OnDemand Apps: Using Containerized OS & Applications
Containerized environments enable:

● Researchers: Use CRADLE 
○ Without extensive compute training

● Group: consistent tools/code packages
○ For an entire team 

Browser access to CRADLE D/HPC
● Pre-configured data science environment 

Easy Access to CRADLE D/HPC 
● Storage, CPUs & GPUs 

Providing 
● Integrated Development Environments: R/Python 
● CRADLE Data Explorer
● SDLE Diagnostics 

○ Web app to detect & fix infrastructure issues
● WebVOWL & JSON-LD Servers: FAIRmaterials

52
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CRADLE Data Explorer: PV Systems, {meta}data, Quality
Ingest 100,470
   Photovoltaic Systems
● To CRADLE3

○ Into HDFS
○ As Parquet Files

● Using Apache Spark3
Distributed Across

● 1000 CPUs
● 100 HDDs

Apache Impala
● For SQL Queries

Provide Codebox
● For Customized Queries

Retrieve All Metadata
● Data Quality Heatmap

53
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Interactive 3D Plots of XRD Diffractograms

54

● Securely query data from CRADLE
● And interact with it in your browser

https://mds3-coe.com
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CRADLE’s D/HPC Architecture Offers Next Generation Capabilities

55

Capability Scale Data Diversity Accessible Distributed Reproducible Security

Local

HPC

CRADLE

In one night a 
scientist can 

train on…

laptop

HPC

CRADLE 
(HPC/ Hadoop)

1000 runs

10000+ 
runs

1-2 runs 1-6 GB datasets

2 TB dataset

10+ TB datasets

Poor

Fair

Good

HPC and Hadoop 
hybrid infrastructure 
enables the ability to 

handle next 
generation 
datasets

Raw compute and 
distributed
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Evaluate models

Model agnostic

Modality specific

CRADLE Data Science Modeling & Learning Framework

56

Query 
data and 
metadata

Reshape/Rescale: 
process & save

augmented vectors 

Load 
pretrained 
encoders 

How do we find the best possible model and make our efforts reproducible? 

Batch & 
fleet  

training 
of 

models 

Neural network 
architecture search

Hyperparameter 
tuning

Experiment 
tracking

Identify best 
model and 
write back

Save 
FAIRified 

model 
outputs 
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MDS3-COE’s: Knowledge Graph Learning Framework

57

Raw datasets

Metadata, Ontologies 
RDF triples, JSON

(abstraction/semantics/constraints) 

... to data standardization 
  & knowledge sharing

… to cost-effective data access, 
analysis & interactive exploration

correlation: 0.8

Summary Graphs
(patterns) 

Scenes or st-Graphs
(representations)

Deep st-graph representation learning
 … to inferential & predictive models

Image/videos, design data, 
in-situ/ex-situ data..

Objects, Observations & Properties
(instances) 

… to create AI/ML ready 
data resources 

model: 
FP-2

temp: 50oC
size: 

1 µm x 1 µm
FAIRification Featuriz

atio
n

SummarizationDeep Learning

validate

curate

linked 
entities

cost-effective learning

efficient access & interpretation

ML/AI 
models

physical 
con-

straints

enriched 
features

[1] Roger H. French et al., “Fairmaterials.” The Python Package Index (PyPI), Oct. 08, 2021, https://pypi.org/project/fairmaterials/ . 
[2] Willam C. Oltjen, et al., “FAIRmaterials: Make Materials Data FAIR.” CRAN, Sep. 14, 2021, https://CRAN.R-project.org/package=FAIRmaterials .
[3] A. M. Karimi, et al., “Spatiotemporal Graph Neural Network for Performance Prediction of Photovoltaic Power Systems,” in Proc. of AAAI,, 2021, 
https://ojs.aaai.org/index.php/AAAI/article/view/17799 . 
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MDS3 Data to Knowledge, Knowledge to Workflow Framework

Raw Data

images(HEXRD/XCT), 
video(AFM)
historical data, 
in-situ data, ex-situ data, 
experiments, scripts… 

Thesaurus, 
Taxonomies  
Ontologies,
Metadata 

Information

Objects, 
Features,
Relations

FAIRification
Knowledge
Extraction 
& fusion

MDS3-
FAIR

MDS3-K
Featurization

MD3-Onto

CRADLE

MD3-KN (Knowledge 
Network of Networks)

Aging & Lifetime 
Knowledge (AL-KG)

Adv. Manufacturing 
Knowledge (AM-KG)

Production Modern. 
Knowledge (PM-KG)

Stockpile Surv. 
Knowledge (SS-KG)

Knowledge
DeepMDS3

ML/AI models, Rules, 
Policies, Provenance…

MDS3-WF

MDS3-Track

MDS3-Assy.

Knowledge to Workflow 
Framework (MD3-K2Flow)

Influential model: “scene 
prediction for crystal. Kinetics 

of fluoropolymers” (Proj A)

Insights
Age & Lifetime Adv. Manu

Prod. Modern. Stockpile. Surv.

Data to Knowledge 
Framework (MD3-D2K)

Workflow
Declaration &

Assembly

?
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Spatiotemporal-Graph (st-Graph) Learning: 
Timeseries Imputation 

& Trend Estimation 

59
A. M. Karimi, Y. Wu, M. Koyuturk, R. H. French, “Spatiotemporal Graph Neural Network for  Performance Prediction of Photovoltaic Power Systems,” in 
Proceedings of IAAI-21, Virtual, 2021.
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UG: Jiana Kambo1, Hyangmok Baek1
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Large Scale Photovoltaic Fleet Monitoring: 104,700 PV Systems

60
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PV Network Representation
Inverters 
○ “Nodes”
○ Individual Timeseries

Site “Similarity”
○ “Edges”

■ How much information 
■ Should connections “share”

Evaluating “Similarity”
○ Distance (Spatial Coherence)
○ Cell Type
○ Nameplate Power
○ Benefits from “FAIRified” datastreams 
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Network Representation of 295 Inverters 
(edges sparsified for visualization)
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PV systems
● Local Weather
● System Age
● Technology
● Module Brand

Why Spatiotemporal Graphs (st-graphs)?
Graphs are enhanced data structures with

● Nodes: 
○ information about a particular object

● That provide: 
○ information about other objects through

● Edges: 
○ through their relationships (“Edges”) 

st-Graphs have distance-based 
Spatial coherence threshold epsilon 

○ Values between 0 and 1  
○ epsilon = 0.75 (st-GAE)
○ epsilon = 0.25 (Decomposition)

We have over 100,000 Nodes
● Of Photovoltaic Power Plants

○ Timeseries Power data (5 min. interval)
● As st-Nodes ingested 

○ Into CRADLE infrastructure!
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Graph Neural Network Computing at Scale

63

In a GNN model 
● Computing the embeddings of a node

○ depends on the embeddings of its neighbors
● This leads to exponential growth 

○ of the number of nodes 
○ involved with number of GNN layers

Hence, large-scale graph learning 
is very challenging 

● Vanilla GNNs fails to scale up, 
○ Limited by the GPU memory space

Most large-scale graph learning 
leverage sampling-based methods

○ Such as 
■ neighbor sampling, 
■ layer sampling, and 
■ random-walk sampling 

○ But may sacrifice prediction accuracy

Illustration of message passing in GNN[1]

[1] Liu W et al. Item relationship graph neural networks for e-commerce. IEEE Trans. Neu. Net. & Learn. Sys., 2021, 33(9): 4785-4799.
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Large st-Graph Calculation Benchmarks
Benchmark tests using CRADLE’s

● State-of-the-art CPUs & GPUs
Compute 100K2 adjacency matrix

● Using multi-processing per compute node
● And fleet out jobs across compute nodes

○ Using SDLEfleets package:
■ ~19 Days ➞ ~ 2 hrs

Use 1 NVIDIA A100 GPU, 80GB VRAM 
○ For large-scale graph learning 

■ Without subgraph sampling

AISC is 32 Integrated A100 GPUs!
○ With integrated RAM & NVME Storage
○ A different, but critical form of

■ “Converged Computing”

Benchmark Results
● Model:  st-GAE-Impute
● Large Scale st-Graph AutoEncoder

○ 10k nodes, ~1 million edges
○ 1-year timeseries for each node
○ 5-minutes interval

● Training time 
○ Using 1 year of timeseries data

■ 5 min. Interval 
○ Run time: 1 hour 55 minutes

■ Epsilon = 0.25
● Inference time: For Data Imputation 

○ On two-months data
○ Run time: 56 seconds 
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CRADLE Benchmarks Table

65

Benchmarking compute task performance on HPC versus CRADLE (Hadoop3) distributed computing, with Spark3 and Nvidia 
Rapids distributed GPU computing. 

Task \ Compute Infrastructure HPC CRADLE

PV: 100K adjacency matrix construction 
(10 billion distance calculations)

19 days (24 CPUs) 19.1 minutes (Spark3)

PV: 100K PV system graph community detection 8.47 hours (40 CPUs) 5.1 minutes (RAPIDS)

PV: Query 5000 PV systems power data, 
from 2.6 billion rows

N/A (overloads HPC RAM 
>250 GB)

~1 hour (Impala, Spark3)

Image Conversions: 100k .ibw image files to .tiff 11.1 hours 0.62 hours (Spark3)

Image Deep Learning: Hyperparameter tuning:  
Training 240 deep learning segmentation models

5.1 days 5.2 hours (SDLEFleets)

Image: Nearest neighbor crystallite calculations 3.8 minutes 1.8 minutes (RAPIDS)
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Timeseries Data Reconstruction and Generative Data Imputation

66

The stGAE-Impute Framework

For PV: Performance Loss Rate (PLR) 
● Critical to profitability of asset

Data Quality Impacts PLR estimates
● Low Quality Data

○ Low Quality PLR estimation
○ High uncertainty, Low accuracy

Data Imputation improves low quality data
○ Physical Models
○ Predictive Mean Matching
○ Gradient Boosting Regression
○ Traditional Imputation Methods
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Data Imputation Accuracy

67

Single Measurement 
Errors

Sensor Outage Model Accuracy
● Insensitive

○ Missingness Types
○ Missingness Severity

● st-GAE Outperforms 
○ Traditional 
○ Deep Learning

st-GAE
● Missingness Types

○ Single Value Corruption
○ Measurement Outage

● Missingness Severity
○ 10% - 60% Measurements Missing
○ 2hrs - 6hrs Inverter Outage
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Data Reconstruction: Block Outages & Anomalous Measurements

68
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Timeseries Decomposition Framework: For PLR Determination

● “Parallel-friendly” K+1 GAE (graph autoencoder) blocks
● One aging-term 

○ Extracts the long-term degradation pattern for PLR analysis
● K different fluctuation terms

○ Captures seasonalities and noises at different temporal resolutions
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Trend Decomposition and Extraction

70

We compare Estimated Degradation Pattern (EDP) extracted by st-DynGNN 
With top six best-performed baselines with Real Degradation Pattern (RDP).

● st-DynGNN can better recover real degradation pattern
● EDP extracted by st-DynGNN is the closest to RDP 

○ in both case 2 and case 3 figures 
○ followed by XbX+UTC and STGAE2
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Spatiotemporal Graph AutoEncoder Takeaways
st-GAE exploits:
● Temporal Coherence
● Spatial Coherence
● Value Dependencies 

71

Proposed Workflow in CRADLE

st-GAE:

● Obtains superior imputation accuracy
● Retains Raw Data properties 

➔ Seasonality
➔ Magnitude 

● Maintains robust performance gains 
➔ % Missingness
➔ Seasonality

● Graph-based Outlier Detection
➔ “Learned” from Fleet
➔ Physics Informed Loss 
➔ Data Similarity

ALL at TERABYTE SCALE tabular data! 
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Pre-trained Model: Availability 

72

PVplr-stGNN 
● pypi

○ https://pypi.org/projec
t/PVplr-stGNN/

● DOE CODE
○ OSTI 105699
○ https://www.osti.gov/

doecode/biblio/10569
9
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Geospatial Data Science
Eutrophication: 

Motion of Nitrogen Through Watersheds
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Water Contamination

74

Lake Erie, 2015

Lake Erie

Agriculture
runoff

Manure
CAFOS 
lagoons
Rain, runoff, or faulty 
storage 

Excess of Oxygen in 
Water

Algae Bloom 
Proliferation

Block sunlight
Release toxine

Consume Oxygen

Dead fish & animals
Economic, Social and 

Environment
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Towards a Nitrogen Circular Economy

75

● CASFER will enable 
resilient and 
sustainable food 
production by 
○ Developing next 

generation, 
modular, 
distributed, and 
efficient 
technology 
■ For capturing, 

recycling, and 
producing 
NBF

End User
Farmers

CASFER Engineered 
System

Concentrated Animal 
Feeding Operation

(CAFOs)

Wastewater Treatment 
Plants (WWTPs) 

CASFER Mission
From Nitrogen Cycle 
Pollution to Nitrogen 

Circular Economy (NCE)  
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 Spatiotemporal Predictive Modeling : Goal

76

Develop spatiotemporal 
models to predict nutrients 
distribution in watershed
Understand and rank factors 
controlling flow of N and P:
● Rain, wind, crops, soil 

type, type of fertilizer, 
elevation, CAFOS, 
practices of applications

● Type of crops, type of 
animals, etc
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Challenges of Geospatial Multimodal data

77

Geospatial Multimodal 
Datasets

Challenges

Data 
Integration

Georeferencing

Data Volume

Scalability Data Fusion

Data 
Heterogeneity

D
ifferent Sources 
and Sensors
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Geospatiotemporal Integration for Multimodal Datasets

78

The Challenge Pre-processing Average Daily Crop Growth

Major Two crops per state
NDVI + Historical Crop + Soil 
data=Spatiotemporal correlation

Data Integration

Stack, Mask, Resample 
(Temporal)

NDVI  + Historical Crop Data
(365 maps per crop)

Crop Health and GrowthLand Use with NDVI

Ohio, Texas and Florida 
(2019)

Featured Regions

Integrating Spatio Temporal 
Multimodal Big Data

4 datasets, different resolutions

Over 1 billion data points (Texas 
only) x 365 days x 2  bands 

IBM EIS dataset
Ohio: Corn, 
Soybeans
Texas: Corn, Cotton 
Florida: Orange, 
Sugarcane

Integration and Correlation

With Nitrogen
Ohio: Corn
Texas:Cotton 
Florida: Orange
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Analysis of Hydrologic Features

79

Extraction of of River Networks
from Global Digital Elevation Models

Datasets used: USGS, WQP and 
GDEMs

Behavior of Discharge and Nitrate + Nitrate Seasonally and Temporally

Behavior of Discharge and Nitrate + Nitrate Temporally
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Overview of Graphical Neural Nets (GNNs)

80

What are GNNs

Node Edge

Graph

[A,B,...]
Features

Friend Circle Example

Person Friendship

[Videos Watched,likes,...]

Features

Examples of GNN Applications
Stream Networks PV st-GNNs

Purpose of GNNs in Watershed Modeling

● Predicting what nutrient 
concentrations would be at 
specific location

● Model structure of watersheds
● Could give us 

sources/quantification of nutrient 
contamination
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Specialization in Geospatial Modeling

81

Geostatistical Geospatial 
Modeling
Course 1 : Principals
Course 2: Methods and 
Coding
Course 3: Case Studies and 
Practical Examples
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Automated Analysis Pipelines for 2D HEXRD

Diffraction Analysis Framework &
 “Scientist Ground Truth” Deep Learning Approach

82
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2D-HEXRD Data Analysis Challenge: Extract All Information
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Current 2D-HEXRD Datasets
from Don Brown @ LANL 

• ~ 22.1 TB 
o~ 3.5 million 2D HEXRD images/movies

• Ti-6Al-4V: 
oIn-situ heat treatment, texture, strain

• Stainless Steel
oWire arc Additive Manufacturing

• In-situ casting of Ti-Nb

D. W. Brown et al., “Evolution of the Microstructure of Laser Powder Bed Fusion Ti-6Al-4V During Post-Build Heat Treatment,” Metall Mater Trans A, vol. 52, no. 12, pp. 
5165–5181, Dec. 2021. 
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2D-HEXRD Analysis Pipeline: Preprocessing & Pre-Analysis

84

2D-XRD 
Image/Video 

Ingestion

Data 
FAIRification

Image 
Preprocessing

Calibration Dark Current 
Correction

Artifact 
Removal

Image 
Centering

Ellipse 
Detection

1D Patterns

High Quality 
Ellipse 

Detection

Hough 
Transform

Primary Step Substep

Input Output

Preprocessing and Pre-Analysis

3D 
Visualizations

Data 
Analysis
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2D-HEXRD Analysis Pipeline Cont.

Ring Location & 
Intensity

Ring Quality

Identify Unknown Rings

Metric Tensor

Structure Factor

Grain Statistics (WAXS, MIDAS)

Phase Fractions

Grain Size Effects d(Δd)

d(η) Variation for Strain

Texture

Primary Step Substep

Input Output

Data Analysis

3D Visualizations

Ellipse Detection

Preprocessing and 
Pre-Analysis

Thermal Expansion Coefficients

Grain Growth/Shrinkage

Phase Evolution

Temporal Effects

Forward Model 
(Simulation and 

Application of Crystal 
Models)
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XRD Analysis Example: β-phase Phase Detection in Ti-64

Using deep learning framework
● Aim to identify β phase volume fraction

During in-situ heat-treatment of Ti-64 alloy
● At APS synchrotron 1ID XRD beamline

 

Ti-64 exhibit two phases 
○ α-phase (HCP) 
○ β-phase (BCC) 

●  Ti-64 sample contained 
○ in stainless steel container

Phase Detection (from set of rings) => 
● The ring color indicates the crystalline phase 
● The blue rings are about α phase, 
● The pink rings are about β phase, and 
● The yellow rings are about the stainless steel.
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Automated XRD Phase Detection Analysis Pipeline

Deep Learning: using CNNs
● CNN model predicts β phase volume fraction 

○ in external 2D XRD

Image Pre-processing
● Dark correction (subtraction)
● Image Centering

○ Multiple rings mask
○ Image registration 

● Room Temperature Translation
○ Resize SS rings 
○ Pixel-wise correlation

Image Datasets
● 10 datasets- 4 labelled & 6 Unlabelled. 

Image Sequence

β-
 v
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Ti-6Al-4V Samples & Datasets 

D. W. Brown et al., “Evolution of the Microstructure of Laser Powder Bed Fusion Ti-6Al-4V During Post-Build Heat Treatment,” Metall Mater Trans A, vol. 52, no. 12, pp. 
5165–5181, Dec. 2021. 

10 Ti-64 samples 
● Processed

○ Using different methods 
○ And at different facilities 

● XRD movies acquired at CHESS
4 labeled datasets

● β volume is known
○ From Don Brown publications
○ A form of “ground truth”

6 Unlabeled (un-analyzed) datasets
During the heat treatment, samples

● Heated from room temperature 
● Held at maximum temp. for 2 hours
● Cooled back down to room temp. 
● Samples HT1, HT2, and HT3
● Different max. heat treatment temp. 
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Deep Learning Approach & Hyperparameter Tuning
“Neural Network Architecture Search”1

● Critical topic in deep learning performance
○ Major topic in Data Science today
○ Which is the best Neural Network architecture to learn from a specific dataset?

Trained 168 CNN architectures, with different hyperparameters
● Tuning CNN models’ hyper-parameters

○ Using our Distributed & HPC system CRADLE2

○ And SDLEfleets to train on GPUs in HPC Compute Nodes
■ Not using the Nvidia AISC

[1] C. Ying, et al., “NAS-Bench-101: Towards Reproducible Neural Architecture Search,” in Proc.36th Intl. Conf. Mach. Learning, PMLR, May 2019, pp. 7105–7114. Available: [Accessed: Oct. 15, 2023]
[2] A. Khalilnejad, A. M. Karimi, S. Kamath, R. Haddadian, R. H. French, and A. R. Abramson, “Automated Pipeline Framework for Processing of Large-Scale Building Energy Time Series Data,” PLOS ONE, 
vol. 15, no. 12, p. e0240461, Dec. 2020.

Architecture of CNN Model #80

Models used for 2D HEXRD learning:
● Regression Convolutional Neural Networks (CNN)

Training & Testing Details
● Trained on 2D XRD datasets from three different heat treatment runs

○ Total 2451 XRD diffractogram images
○ i.e. PB1, PB2, PB3, 
○ Train: 81% (1955 images), Validation 19% (451 images)

● Utilizing the trained CNN model to predict on a test dataset, WR-HT2
○ 1103 diffractogram images
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General Analysis of CNN #80’s Performance
While CNN #80 has a low MSE on WR-HT2 (0.02%) 

• But it performs poorly on the training set
• Particularly on PB3 dataset.

Takeaway: 
 No 1 “best” CNN Architecture 
 For 2D XRD Analysis

Datasets & Models have biases 
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Robust Models on Testing and WR-HT2 Datasets

  Regr. CNNs Models that perform well 
● On both of the train dataset

● And WR-HT2 datasets

Selected top 15 models on the WR-HT2 dataset 
● And the top 15 models on the train dataset. 

Nine of these 15 best performing CNN models
 Were the same CNN Architectures

 Indicating their robustness.
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Deep Learning for 2D HEXRD
Use a Kinematic Diffraction Forward Model 

For Regression CNN Training 

92
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A Forward Model to Simulate X-Ray Diffractograms

93

Challenges training neural networks to predict  {micro}structure from diffractograms:
● No large experimental datasets for which microstructure is known
● Nor are features varied over a large range 

○ That are independent from other parameters
● Even “human labelled data” is not the absolute “ground-truth”

Simulation XRD data can incorporate all parameters of the
● X-ray diffractometer and the sample’s crystal structure and grain microstructure

Provides granular control over parameters we want the neural networks to learn
● Reduces need for “scientist ground truth” experimental data
● Needed for NN training, Which may not exist

https://mds3-coe.com
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Kinematic Diffraction Forward Model Pipeline for 2D HEXRD

94

Goal
● Retrieve info from diffractograms
● Replace human experimentalists
● By Neural Networks (NN)
● Quantify microstructure

Approach
● Train NNs to learn information
● Need: Training data
● Ab-initio simulations for data 
● NN training

○ Varying hyperparameters
● Simulations verified by

○ Labeled experimental data
● The trained NN is then

○ Applied to experimental data

https://mds3-coe.com
http://sdle.case.edu/
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Kinematic Diffraction Simulation Package
Kinematic Diffraction Simulation: (Diff-Sim)

● Mathematica paclet 

○ Written in Wolfram Language

● X-ray Diffractometer parameters

○ Wavelength of the primary beam

○ Beam divergence

95

● Sample parameters

○ Any crystal structure

○ Any number of phases

○ Grain size distribution per phase

○ Any texture per phase

https://mds3-coe.com
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Simulated Diffractograms of Ti-6Al-4V: 0% & 100% β phase

96

For 100,000 grains in irradiated volume

The intensity of the rings associated with the β-phase 
● Increases as it’s mole fraction increases

100%α- 0%β Ti 0%α- 100%β Ti 
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Simulated Diffractograms of Ti-6Al-4V: 80% & 100% β phase
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For 100,000 grains in irradiated volume

As we get to pure β-Ti, 
● The rings associated with the α-phase disappear and 
● The entire intensity is from the β- phase

20%α- 80%β Ti 
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Effect of Various Parameters on The Simulated Diffractograms
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Effect of grain-size distribution Effect of number of grains

Ring continuity (spotiness) depends on 
● The grain-size distribution 
● The number of grains 
●

https://mds3-coe.com
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Effect of Microstructure Parameters on Simulated Diffractograms
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Ring continuity (spotiness) depends on:

● Number of grains.

https://mds3-coe.com
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Ring continuity 
(spotiness) 
depends on

● Grain-size distribution.

Effect of Microstructure Parameters on Simulated Diffractograms

100
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β-phase Detection: Train CNN Models on Forward Model  Simulation Data

101

Regression CNN Training & Testing Details

● ~5500 Diffractograms for Training 
○ An equal split of ~2250 each
○ The diffractograms are either 

■ Pure α-Ti (0% β), or
■ Pure β-Ti (100% β)

● ~1000 Diffractograms for Testing
○ Contains data at every 5% β-phase fraction
○ So, around 50 diffractograms at every 5% β-Ti

● Construct Models With an Identical Architecture to the 
○ Top-performing model 
○ From our prior experimental datasets

https://mds3-coe.com
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Performance of models with different architectures on testing set
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Visualize models’ performance based on:
● Difference between predicted and true values
● Predicted values vs. true values

Inaccurate modelsInaccurate models

Diffractogram in testing set is 
● Sorted from 0% to 100% β mole fraction 
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Neural Network Architectures & Performance of the Trained CNN Models
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Model 
Index

Convolutional 
layers

Dense 
layers

Parameter
number

Metric 
(MSE)

8 4 128-64 260 M 0.00527

12 4 128-64-32 260 M 0.00522

16 5 128   126 M 0.00833

32 6 128 520 M 0.012

44 7 128-64 129 M 0.0231

80 9 128 125 M 0.0230

Visualization for architectures of these CNN models
● Ignored two low performance models (model 28 and 44)

https://mds3-coe.com
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‘Best’ Regression CNN model so far
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After fine-tuning the learning rates, 
● Determined that a learning rate of 1 x 10-4 resulted in 
● Model 16 achieving its best performance

https://mds3-coe.com
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Further Hyperparameters Tuning

Even for the same Neural Network architecture models, 
● Different Hyperparameter settings during training 

○ Learning rate 
○ Batch size

● Affect the model’s learning and  final performance

Numerous hyperparameters can be varied during the training. 
● It’s always a tradeoff between compute resource and models’ performance

105

Model Index MSE Batch size LR

16 0.0345 16 0.00005

16 0.00094 16 0.0001

16 0.00833 16 0.0005

16 0.0833 16 0.001

16 0.0342 16 0.005

https://mds3-coe.com
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Training history curve for different learning rates
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HEXRD Analysis Takeaway 
Comprehensive deep learning 2D HEXRD Diffractogram analysis pipeline 
● For automated phase fraction detection 
● Complex feature analysis in 2D XRD
● Can handle terabyte-level XRD datasets

Forward model simulates kinematic diffraction data
● Details for microstructure for materials (ground truth)

Hyperparameter tuning pipeline for Deep Learning Models
● Avoid invalid models
● Achieves high accuracy on external datasets
● Generates robust model architectures

Not all NN Models learn the same information from a particular dataset!

https://mds3-coe.com
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Automated Pipeline for X-ray Computed Tomography 

Observing Pitting Corrosion of Aluminum Wires

GS: Tommy Ciardi1, Maliesha Sumudmalie2 

Postdoc: Pawan K. Tripathi2

Faculty: Alp Sehirlioglu2, Philip Noell3 , Roger H. French1,2

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
3. Sandia National Laboratory, New Mexico, USA

 

1. Case Western Reserve University, Cleveland OH, USA
2. Sandia National Labs, Albuquerque NM, USA
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT
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In-situ XCT observations of Aluminum Wire
○ 0.813 mm diameter 1100 Al wire

■ Commercial-purity Al
○ NaCl picoliter-sized droplets 
○ Exposed to 98% RH at ~25° C 

■ for 122.33 hours
○ 1.25 mm length of the wire imaged by XCT

■ Over the course of the exposure 
■ 996 slices

○ Voxel size of 1.25 μm
○ Spatial resolution of 15.6 μm3

■ (2 × 2 × 2 voxels)

A total of 88 XCT datasets were collected 
○ Over 122.33 h (~5 days) 
○ At a 83 min temporal resolution 
○ Total number of images = 996 x 88 

■ = 87,648 (~100GB)

Al Wire Sample & XCT Scan Details

https://mds3-coe.com
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Characterizing Pitting Corrosion in Al-1100 Bond-Wires
Features of interest

● Growth kinetics of cumulative pits
● Growth kinetics of individual pits
● Evolution of pit morphology

Current Approach (at Sandia)
● Manual segmentation of the pits using

○ Commercial software: Dragonfly 3D 
○ Based on grayscale values and location
○ Evaluate pit volume and surface area

Goal: 

Build a pipeline to study pitting corrosion behavior 

through a large scale XCT dataset

 P. J. Noell et al., “The evolution of pit morphology and growth kinetics in aluminum during atmospheric corrosion,” npj Mater Degrad, 7, 1, 1, Feb. 2023.
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Pipelining Process is Great for Communicating Code
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U-Net Architecture for Image Segmentation
Train an U-Net model on 2D XCT 
images

● # training images = 293
● # epochs = 100
● Batch size = 4

SE-ResNeXt101 encoder
● Provides sufficient depth as standard 

four block encoder failed

Hybrid focal & Jaccard loss 
function:

● Focal: class imbalance
● Jaccard: IoU focus

○ Intersection over Union (IoU)

https://mds3-coe.com
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U-Net Model Results
Segmentation Prediction Example

Time step 47
(63.6 hrs after 

exposure)

Time step 57
(77.5 hrs after 

exposure)

2D XCT 
Images

Binarized 
U-Net Mask 
Prediction

Accuracy = 99.9 %
Precision = 88.2 %

Recall = 90.4 %
Binary IoU = 79.2 %

Model Performance

https://mds3-coe.com
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Segmentation Comparison

Green True Positives

Black True Negatives

Red False Negatives

Yellow False Positives

https://mds3-coe.com
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Unwrapping the Cylindrical Wire, for Pit Visibility
pointextract.py 

● Translates a 2D wire cross section to 
a rectangular version

Applied this transformation to 
● the entire 3D volume of pit segmentation maps 

○ generated by U-Net

Z - Along the wire’s axis

[1] Liangyi Huang and Roger H. French, “pointextract.” 11-May-2022 [Online]. https://pypi.org/project/pointextract/ 
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Temporal Variations of Cumulative Pits
Cumulative Volume Loss Over Time

(Pitting Volume) Number of Pits Over Time

Piecewise sigmoidal pattern Wave-like pattern

Secondary Growth 
Regime

Initial Growth 
Regime
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Growth Kinetics of Individual Pits

All 4 pits exhibit sigmoidal growth kinetics.
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Pit Morphology Evolution

Both depth & width start expanding 
● from the point of nucleation

The width of the pit 
● Is growing at a faster rate 
● than its depth.

Pit width and pit depth evolution over time for the largest pit
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Pit Morphology Evolution Over Time: Impact of Texture?
Plane of Wire’s Surface
● Yellow line

119

For this large pit
● Growth progresses into, and along the wire axis
● Possibly arising from the textured microstructure of the wire

https://mds3-coe.com
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Summary of the Pipeline
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Pitting Corrosion Takeaways
Our automated pipeline has a global impact by:

● Enhanced efficiency in corrosion detection and assessment
○ Reduce time and resources vs. manual inspection.

● Ability to assess the lifetimes, enhance reliability, and 
○ Ensure long-lasting durability of passive alloys.

● Improved maintenance and safety in infrastructure
○ Allows for timely maintenance and replacement of affected components
○ Reducing the risk of failures, outages, and accidents. 

● Environmental impact and sustainability
○ Reduce waste and the environmental footprint 
○ Associated with alloy components production and disposal 
○ By extending the lifespan of them.

https://mds3-coe.com
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Deep Learning Framework for Spatiotemporal Feature Extraction 
and Statistical Characterization of Terabyte-Scale XCT Datasets

122

Strengthening NNSA’s Capability to Modernize Manufacturing & Production 

GS: Tommy Ciardi1, 
Faculty: John Lewandowski2, Roger H. French1,2

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

 

1. Case Western Reserve University, Cleveland OH, USA
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT
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The Big Picture (and Challenge)

123

Challenge: scale of the data

● Terabytes per sample

● Outpaces the current analysis software

How do inclusions influence stress corrosion 

cracking in Al-Mg alloys in different environments?

Enabled through X-ray Computed Tomography

How do microstructural features influence temporal 
changes in materials under certain conditions?

Advances in instrumentation and computational power

Challenge: scale of the data

● Order of Terabytes

● Outpaces software and infrastructure

Challenge: experimental philosophy

● Reduction of data

A Materials Science Problem A Materials Science Domain Challenge 
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Experimental Background
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AlMg plates from HMCS Iroquois:

● Decommissioned Navy destroyer

● 1972 to 2014 in Gulf theatre, Domalia, and Caribbean Sea

● Aluminum: 5XXX rolled plates, ~H116 temper, ~4.7-5.5wt% Mg

[1] Burnett, T.L., Holroyd, N.J.H., Lewandowski, J.J., Ogurreck, M., Rau, C., Kelly, R., Pickering, E.J., Daly, M., Sherry, A.H., Pawar, S., Slater, T.J.A., and Withers, P.J. (2017). “Degradation of Metallic Materials Studied by Correlative 
Tomography”, in 38 th Riso International Symposium on Materials Science – IOP Conf. Series: Materials Science and Engineering, 219(1), 012001.
[2] Gudla, V.C., Garner, A., Storm, M., Gajjar, P., Carr, J., Palmer, B.C., Lewandowski, P.J., Holroyd, N.J.H., and Burnett, T.L. (2019). “Initiation and Short Crack Growth Behavior of Environmentally Induced Cracks in AA5083-H131 Investigated 
Across Time and Length Scales”, Corrosion Reviews, 37(5), pp. 469-481.

Detectors

Sample

Sample Processing:

● Plane N (roughly 6mm thick)

● Exposure to sun = higher degradation

● T orientation

Slow strain-rate tension test

● Synchrotron at Diamond Light Source 

○ (Didcot, UK)

● Intermittent holds on load to scan XCT

https://mds3-coe.com
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Experimental Data from 3D XCT Scans

125

Scale of Data:

~3TB of image data from two samples (3.4 TB of total img/non-img data)

231 subdirectories

238,430 images (239,879 files)

Previous analysis has been limited to hand selected subsets of the dataset[1]

● Data reduction problem

< 1% RH (dry) 50% RH

Number of scans 36 77 

Size 929.5 GB total (~1TB) 1949.64 GB total (~2TB)

Series of 3D volumetric scans as 2D images in a movie through time

Each scan (one 3D image) sliced into 2110 2D .tiff images

● 12MB per image at 2510x2510 resolution = 24.7 GB per scan

[1] Gudla, V.C., Storm, M., Palmer, B., Lewandowski J.J., Withers, P.J., Holroyd, N.J.H, and Burnett, T. (2020). “Environmentally Induced Crack (EIC) Initiation, Propagation, 
and Failure: A 3D In-situ Time-lapse Study of AA5083-H131”, Corrosion Science, 174, 10.1016/j.corsci.2020.108834
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Image to Scene Knowledge Learning Framework

126

Raw datasets

Metadata, Ontologies 
RDF triples, JSON

(abstraction/semantics/constraints) 

... to data standardization 
  & knowledge sharing

… to cost-effective data access, 
analysis & interactive exploration

correlation: 0.8

Summaries & Patterns
(data regularities)

Scenes or st-Graphs
(representations)

Deep (graph) representation learning
 … to inferential & predictive models

Image/videos, design data, 
in-situ/ex-situ data..

Objects, Observations & Properties
(instances) 

… to create AI/ML ready 
data resources 

model: 
FP-2

temp: 50oC
size: 

1 µm x 1 µm
FAIRification Featuriz

atio
n

SummarizationDeep Learning

validate

curate

linked 
entities

cost-effective learning

efficient access & interpretation

ML/AI 
models

constraints/
validation

enriched 
features

1

3

2

4
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Featurization

127

Objects, Observations & Properties
(instances) 

… to create AI/ML ready 
data resources 

model: 
FP-2

temp: 50oC

size: 
1 µm x 1 µm

1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT
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Features of Interest: Overview
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Fracture

InclusionPore

Challenge:

● In-situ XCT imaging 

○ Results in low resolution

● Due to straining of sample

● Thousands of features 

○ Per 2D cross-section 125 μm

40 μm

500 μm

20 μm

https://mds3-coe.com
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Feature Extraction: Classical Image Processing

129

raw image ellipse detection

equalization object removal

thresholding components unprocessed section
Problem: Handcrafted features require 

thousands of man hours

Solution: Classical image processing pipelines 

for semi-supervised label generation
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Feature Extraction: Deep Learning

130

● Image processing is parameter dependent and computationally heavy

● Deep learning networks offer robust, transferable segmentation models

Image 

Processing

Deep Learning

Example failure case that 

becomes solved

Image 

Process

Deep 

Learning

Raw
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3D Reconstruction of Features

131

We can predict features on 2D cross sections

Then stack the segmentation masks to reconstruct 
our features in a 3D space

Fracture reconstruction: 250 slices Inclusion reconstruction: 50 slices

Top down view of 50 slices 
with labeled fracture and 

inclusion

https://mds3-coe.com
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Summarization

132

… to cost-effective data access, 
analysis & interactive exploration

correlation: 0.8

Summaries & Patterns
(data regularities)

1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT
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Statistical Quantification - Summary

133

Inclusion Feature 
(single 3D volume)

Value

Count 161574

Average major axis (px) 10.978

Average volume (voxel) 180.904

Volume fraction ~0.9%

Quantification of defects for a full 3D XCT volume enables 

us to build a complete microstructural defect profile

We can query and understand our complete dataset:

Spatial: How many inclusions exist in one mm3?

Temporal: What is the average fracture length over time?

https://mds3-coe.com
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Statistical Quantification - Granular

134

Inclusion Feature Value

Major axis (px) 43.01

Volume (voxels) 1340

Quantification of every individual feature

enables us to investigate a single defect of 

interest

Query x feature for attributes of the any 

100,000+ features detected

Largest detected fracture at timestep 20

Largest inclusion at timestep 25 and attributes

Automated extraction of 13,000,000+ total features

Query profile

Retrieve 
attributes

Gain Insight
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Next Steps: Spatiotemporal Scene Graphs
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Labeled features can be turned into nodes in a graph and 
then edges created between corresponding nodes

A single graph represents one point in time, multiple 
graphs can be stacked for temporal analysis

Summary Graph Generation Spatiotemporal Scene Graph Generation

Scene graphs will be generated to label actions and relationships to 
identify what is occurring both spatially and temporally

cr1

cr2

cr1

cr2: opens

cr1: extends

cr1: branch

cr2: extends

cr1,cr2: bridge

cr1

temp: 50oC
type: 

inclusion

class: 
oxide

size: 
 1 µm x 1 µm

correlation: 0.8

tim
e

How can we ask more complex questions 
● (E.g. do fractures tend to extend towards regions of higher defect density?)

Generate scene graphs[1] for an interpretable full-scale microstructural and degradation analysis

[1] Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of 

spatio-temporal scene graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (pp. 10236-10247).
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Summary Graph Generation

Fracture Features Value

Major axis (px) 43.01

Volume (voxels) 1340

Orientation intergranular

density based 
clustering

graph for 
timestep 32

input for graph 
neural networks

fracture embedded 
as node

Translating 3D feature stacks 
and attributes into graphs

[43.01, 1340, 1]
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Summary Graph Example: Fractures for a Single Timestep

Graph Representation

● Full 3D volume

● Timestep 54

● Fractures only

● 15602 nodes (fractures)

● 198151 edges

cluster of fractures

isolated fracture
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Generative Graph Representations
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timestep 1 timestep 2 Given t1 … ti 
● predict graph representation for ti+1

…

inclusion

fracture
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Spatiotemporal Feature Extraction Framework for Large-Scale XCT Datasets
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Grand Challenge Semi-supervised Deep Learning Spatiotemporal Feature Profile

Sample-level Insights

Defect-level Granularity

spatiotemporal quantification of 
over 13,000,000 defects

volume fraction 0.903%

3D Defect Reconstruction

image processing and zero-shot 
learning annotations trained deep 

learning model

feature 
segmentation 

mapping

stack feature maps

filter spatial inconsistencies

defect volumes

semi-supervised label pipeline

deep 
learning 
model

robust 
feature 

extractionfracture - inclusion - pore

features of interest

Framework to analyze full 
Tera/Petabyte scale datasets

2 samples = 3 TB data
240,000 2D cross sections

stress corrosion cracking in Al:Mg 
alloy creep test in synchrotron

exemplar dataset
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Conclusions: Lets Collaborate on Materials Data Science !
AI/ML for Materials Data Science needs D/HPC Computing
● Needs the integration of “Scaled Out & Scaled Up” Computing

CRADLE: Common Research Analytics & Data Lifecycle Environment
● Automated pipelines, FAIRification, Efficient Insights
● Broadly Applicable

CRADLE represents a different mind-set on how to do Materials Science
● Don’t initially simplify, and constrain variables
● Collect all the data
● Analyze ALL the data
● Then summarize it, using Graphs 

Data Centric AI presents humans with a grand opportunity
● Augmenting human reasoning; Working alongside human researchers
● Scientific investigations restructured around the “salient human tasks”
● With computers handling the routine and onerous tasks
● Supplementing our human capabilities

While reducing use of reductionist approaches in scientific research
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Conclusions: AI Represents an Inflection Point for Science!
AI/ML for Materials Data Science needs D/HPC Computing
● Needs the integration of “Scaled Out & Scaled Up” Computing

CRADLE: Common Research Analytics & Data Lifecycle Environment
● Low barriers to entry for scientists
● Broadly Applicable: Automated pipelines, FAIRification, Efficient Insights
● While Introducing State-of-the-art Data Management, AI/ML, and Scientific Workflows

CRADLE represents a different mind-set on how to do Materials Science
● FAIRified Datasets and FAIRfied Models enable automated AI Materials Science 
● Don’t initially simplify, and constrain variables
● Analyze ALL the data
● Then summarize it, using Graphs 

Data Centric AI presents humans with a grand opportunity
● Augmenting human reasoning; Working alongside human researchers
● Scientific investigations restructured around the “salient human tasks”
● With computers handling the routine and onerous tasks
● Supplementing our human capabilities
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT
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