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Materials Data Science Enabled by Integration of Distributed and High Performance Computing: Accelerating
Time to Science sans Human Interaction

Modern materials science research produces petabyte-scale, heterogeneous datasets that span multiple
modalities. Coherently integrating such data presents a significant unsolved challenge not addressed by
current high performance computing approaches. CRADLE, an infrastructure and framework tackles
these materials data science challenges in several ways: 1) scaling to handle large, diverse datasets
through distributed computing and vertical scaling; 2) supporting the full data lifecycle from data
ingestion to model deployment; 3) providing accessible tools that enable novice to experienced users to
construct end-to-end machine learning pipelines.

We demonstrate “CRADLE analytics” on terabyte-scale multi-modal data at scale through four
exemplar cases: 1) photovoltaic (PV) power time series imputation using generative graph neural
networks given billions of power measurements, 2) integrating geospatial data to track fertilizer runoff,
3) X-ray Diffraction (XRD) analysis of in-situ movies, and 4) crack/precipitate analysis with summary
graph generation on timeseries X-ray Computed Tomography (XCT) creep test datasets.

CWRU &

MDS?® COE, SDLE Research Center, Roger H. French © 2023 ps://mds3-coe.co ://sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/

“SDLE Research Center”’ & Materials Data Science

Create Cross-cutting Solutions Based in Materials Data Science

SDLE’s Research Centers and Funded Projects
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FAIRifcation, Domain Ontologies, Study Protocols, Global Geospatial Repository, netSEM, PVimage, ddiyv,....

SDLE Core Facility: Equipment, Tools, Outdoor Testing, CRADLE Computing, Benchmark Datasets,

SDLE as a Data Science Incubator and Foundation
SDLE Research Center:

Develops Materials Data Science Solutions & Leading Edge Materials Science Research
Across a broad range of research projects and centers

Common Research Analytics & Data Lifecycle Environment
CRADLE Computing & Analytics
e Integrate Distributing Computing
o “Scaled Out Computing”
e With High Performance Computing
o “Scaled Up Computing”

Agile Team Science
e Agile Manifesto for Software Development
o  Slack, Jira KanBan, Confluence, Bitbucket
e Use 4 Month Long Cross-cutting Sprints
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Create Cross-cutting Solutions Based in Materials Data Science

SDLE’s Research Centers and Funded Projects

MDS-RELY CASFER ERC MDS3-COE PV, Edifice, EERS
/ Agile Team Science \
Useful “Home Page” forATS https://start.atlassian.com/

£ N R - \

Confluence Spaces Jira KanBan Boards itbucket (Git) Repositories
e SDLE Lab Meetings e Admin Boards e Project Repositories

e MDS? Meetings e Research Packages Boards e Research Package Repositories
e SDLE Wiki e Project Boards e Manuscript LaTeX Repositories
e Collaborators e Thesis LaTeX Repositories

. SLACK Team Messaging .

\ SDLE Core Facility: Equipment, Tools, Outdoor Testing, CRADLE Computing, Benchmark Datasets /

SDLE as a Data Science Incubator and Foundation

SDLE Research Center:

Develops Materials Data Science Solutions & Leading Edge Materials Science Research
Across a broad range of research projects and centers
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The vision of the MDS® COE

e Develop, demonstrate, and deploy
o Novel Materials Data Science (MDS) tools
e Frameworks, codes, and computing infrastructure

o “Research Packages”

. < Knowledge Management &
° To advance our u nderstand|ng of Learning, Data-enabled Workforce

O Materials degradation
O Parts Design and Optimization for Fabrication
O Failure of materials, parts, and subsystems

Materials

e Using novel computer science and data science , Field-Lab Aging & Reliability, Next-
. . Gen Design Optimization
™. &Production

e Empowering current NNSA/NSE employees

e Delivering a pipeline of
data enabled workforce (DEW) for the future
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MDS?3 COE’s focus: Initial NNSA Programs & Collaborations

NGLGG"- Adv. Manu.: Polymer Adv. Manu. of Structural |
Design Components Metal Components

Materials Data Science

Center of Excellence

for Stockpile Stewardship

MD@COE
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Data Enabled Current NSE & Production NA19 ,
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The Components of our (MDS?) Data-enabled Workforce Pipeline

_______ CWRU - EMSE
’ RN
I Q9
Q9
: g 3 EMSE SDLE Research Center
I g
: 25 MDS? - PV Reliability
I ﬁ 3 - MDS-Rely - Geospatial
I e < CASFER
© D
| 85
I Q=
I CASFER 14
' 1student /' (REUSs) Teaching - DSCI Courses:
—_———— - 7 - Undergraduate
- Applied Data Science - Graduate

ACS Project Seed

High Schools:

- Cleveland Metropolitan
School District

- St. Martin de Porres

- Heights High

- Materials Data Science

UTRGV

- Undergrad
- Graduate

Tuskegee

- Undergrad
- Graduate

PITT (MDS-Rely)

- Undergrad
- Graduate

- - —

CWRU NorthStar Partners

Employment at
DOE Labs

Summer & Year Round

DOE Lab Internshipsw

How to create a new pipeline
For Data-enabled Workforce
To supply the needs of

e DOE Labs Text
e And US Industry
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MDS? Data to Knowledge, Knowledge to Workflow Framework

ey Ins' hts Influential model: “scene Knowledge to Workflow
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CASFER : ANSF ERC ( Engineering Research Center)
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Towards a nitrogen Circular Economy CASFER

ter for Advancing Sustainable
d Distributed Fertilizer Production

CASFER will enable
e Resilient & sustainable food
production
e By developing
O Next generation,
O Modular,
o Distributed, &
o Efficient technology

To capture, recycle & produce
Nitrogen Based Fertilizers (NBFs)

Concentrated Animal
Feeding Operation

From Nitrogen Cycle
Pollution to Nitrogen

Circular Economy (NCE)

T

] &' Georgia TEXAS TECH ESERVE
TeChm UNIVERSITY. st ¢ [JNIVERSITY
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MATERIALS DATA SCIENCE

LWRELY

The Center on Materials Data Science
for Reliability and Degradation

NSF Award# 2052776 / 2052662

Director, Laura S. Bruckman
Pitt Site Directory, Paul Leu

% CASE WESTERN RESERVE %] University of
UNIVERSITY EST. 1826 DE-NAG004104 R PlttSbur
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MDS-Rely 2023/24 Research Portfolio

Polymers, Elastomers & Coatings
* Non-Invasive Detection of Defects during Coatings Manufacturing, Chris Wirth

» Predictive Framework to Indicate the Age of Plastics for Proper Recycling, Metin

Karayilan, Divita Mathur, Sanmukh Kuppannagari
» Machine Learning Methods for Optimizing and Innovating Structural Color Paints

and Coatings, Paul Leu, Oliver Hinder, Jungtaek Kim

Metals & Alloys
» Achieving Reliable Laser Powder Bed Fusion based Additive Manufacturing via
Machine Learning of in-situ Optical Profilometry Monitoring Data, Xiayun Zhao
+ Data-driven Analysis of Hydrogen-Degraded, Additive Manufactured Zircaloy,
Markus Chmielus & Zachary Harris
Components, Devices & Systems
» Effects of Aerosol Jet Printing Parameters on the Lifetime Performance of
Additively-Manufactured Flexible Circuits, Janet Gbur
* Enhancing Degradation Analysis and Failure Prediction through Modern Machine
Learning Techniques, Satish lyengar
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A BHEF CASE STUDY

] o ; : ;
i THROUGH THE COLLABORATION of its business and higher education

/
/ / / members, the Business-Higher Education Forum (BHEF) launched the

CREATING A MINOR IN /

PPLIED/
DATA
SCIENCE"

National Higher Education and Workforce Initiative (HEWI) to create

new undergraduate pathways in high-skill, high-demand fields such as

data science and analytics. Data science and analytics must be integrated

with T-shaped skills, such as critical thinking, collaboration, and effective
communication, which are critical for all graduates entering the 21st century
workforce. Knowledge of data science and analytics in recent years has become
4 as fundamental as any other skill for graduates’ career readiness. BHEF's

Strategic Business Engagement Model with higher education addresses this
partnerships through five strategies:

1. ENGAGE corporate leadership;

Case Western Reserve University Engages Business 2. Focus corporate philanthropy on undergraduate education;

Leaders to Produce T-Shaped Professiongls ¢

3. IDENTIFY and tap core competencies and expertise;

demand by moving the two sectors from transactional relationships to strategic

THE APPLIED DATA SCIENCE (ADS) MINOR AT CASE
WESTERN RESERVE serves as a national model for
undergraduate education in data science. Available to
every undergraduate student across all schools at the
university, this program of study requires experiential
learning opportunities, embeds T-shaped skills, and
allows students to master fundamental ADS concepts
in their chosen domain area. From strong leadership
engagement to funded undergraduate research
opportunities, Case Western Reserve applied BHEF’s
Strategic Business Engagement Model to create a
minor that responds to the fundamental need for data
science in today’s global business community.

Medical Mutual of Ohio
Medtronic

Philips Healthcare

Sherwin-Williams
Company

18

undergraduate education.

This case study examines how BHEF member Case Western Reserve University
(Case Western Reserve) is integrating T-shaped skills into a minor in applied

J data science.

er H. French © 2023 https://mds3-coe.com http:
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Open Source, Open Data, Reproducible Research Tools For Science

Using Open Source tools
-R & Python coding thon R
-Git code versioning & couaoorauon

-Cross-Platform (Linux, Mac, Windows)
-.LaTeX & Markdown

Reproducible Research

-Distribute Code & Datasets
-At time of paper publication
-Your research can be reproduced by others
-Others can build on your research and data

Use Agile 5evelopment Tools
-Slack team messaging
.Jira Cloud Issue Tracking
-BitBucket/GitHub/GitLab

Build Packages for Science

Use Package-based systems

-Rely on well-vetted Open Source Codes
R Packages
-Well vetted, with know package dependencies
-With Vignettes on Theory, & Use
-With Data Sets and Results for Validation

“CWRU &
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CRADLE Analytics: Enable Sparse to Massive Data Analytlcs

Materials Data Science
Distributed/High Performance Computing
Coherent Data Lifecycle Environment

» Data & Modeling Stay Integrated a0k (0,99,
» Over years, Building on prior work NRW: FLP(0.00), FRANES

Low Barriers for novice Data Scientists : ¥ AUTOLNNoN.SEA
% BUNDED s
+0 G
%_‘g

Automated Data Analysis Pipelines 0. boas
Enable Terabyte Dataset Analysis ‘ oy 4
 Adv. Manu. Datastreams 0.2430 CONTROLLED ACCESS S
« Beamline HEXRD 0.0284 CONSTRUCTION

» Other Big (or Sparse) Datasets
Write-back All Models & Results

Future Analysis Builds On Priors

Datasets & Al/ML Models Get Smarter
Minimize Large Data Transfer

Prefer In-place Analytics (Hadoop/Spark)
Focus on Fast/Efficient Modeling

Such as high speed segmentation
For Autonomous Driving

“CWRU &


https://mds3-coe.com
http://sdle.case.edu/
https://docs.google.com/file/d/1-DjRn9eqpJHmtKqt63xwI_36VQBIxAW9/preview

The Challenges, & Opportunities, of AI/ML: Accelerating Time to Science

To develop AI/ML for Science, such as Materials Science
We have High Performance Computing (HPC)
e “Scaled Up” Computing: Works for Physics Simulation Modeling
o But doesn’t handle massive datasets
Yet Big Tech uses Distributed Computing (DC)

® “Scaled Out” Computing: e.g. used by Google, Meta, etc.

AI/ML for Science needs D/HPC Computing
e Needs the integration of “Scaled Out & Scaled Up” Computing
e CRADLE'™: Common Research Analytics & Data Lifecycle Environment'
o Automated pipelines, FAIRIfication?, Efficient Insights

Data Centric AlI® presents humans with a grand opportunity
e “Computational Inflection Point for Scientific Discovery™
o Augmenting human reasoning; Working alongside human researchers
o Scientific investigations restructured around the “salient human tasks”
m With computers handling the routine and onerous tasks
m Supplementing our human capabilities

While decreasing reductionist approaches in scientific research

In SDLE Res. Cntr.

e Dist. Compute
o 2.5 Pb Cluster
o 7 TB Ram
o 1164 CPU Cores

o 30 GPUs
m 480 GPU VRAM
m 384k Cuda Cores
m 1.2k Tensor Cores

e High Perf. Compute
o 7152 CPU Cores

e Nvidia AISC 8 DGX
o 2.5Tb VRAM
o 4Tb RAM
o 15 Tb nvme storage

halllnejad ry s “Automated Pipeline Framework for Processing of Lare-ScaIe ” PLOS ONE, 15, 12, p. €0240461, Dec. 2020.
. CW RU . Oltien et al., AIlelcatlon Quality Assessment. and Missingness Pattern . EEE PVSC, Jun. 2022, pp. 0796-0801.
UCF

. Jarrahi, et al., “The Principles of Data-Centric Al.” Commun. ACM, vol. 66, no. 8, pp. 84-92, Jul. 2023,

ope, et al., “A Computational Inflection for Scientific Discovery.” Commun. ACM, vol. 66, no. 8, pp. 62—73, Jul. 2023,
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Al4Science: An inflection point for Science

DO0I:10.1145/3576896

key insights

m Recent advances in Al present great

DOE NNSA & DOE Office of Science

e Are individually funded by congress
e And working towards $2B for Al4Science ‘

Both have noticed our MDS® COE
e As a demo of what the opportunity is

Enabling researchers to leverage
systems to overcome the limits
of human cognitive capacity.

BY TOM HOPE, DOUG DOWNEY, OREN ETZIONI,
DANIEL S. WELD, AND ERIC HORVITZ

A Computational

D0I1:10.1145/3571724

Uniting data-centric perspectives and
concepts to trace the foundations of DCAL

Inflection for
Scientific

key insights

B DCAIl is an emerging paradigm that
emphasizes the importance of data

BY MOHAMMAD HOSSEIN JARRAHI, ALI MEMARIANI,
AND SHION GUHA

quality and dynamism in Al systems,
using an iterative, systematic approach.

]
] [ ] p <
to a continuous improvement factor,
e rI nCI es encouraging consistent enhancement of
both data and model throughout the Al

of
I

DCAI is redefining the role of data from
being merely a preprocessing concern

Discovery

life cycle by incorporating strategies such
as data augmentation.

[ |
ata- entrlc B A specific contribution of this article is
its focus on the human-centered nature

of data that feeds Al systems, presenting
data as a sociotechnical system,
embodying both technological elements
and social norms, and biases.

IMAGE BY OLLOMY

&
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opportunities for augmenting human
scientific r i Future sy

may work al ide throug

the scientific process: detecting and
explaining relevant literature, generating
hypotheses and directions, suggesting
experiments and actions.

The scientific process may be
d p d into sali I tasks.
Task-guided scientific knowledge
retrieval systems retrieve and

ynthesize external k ledge ina
manner that serves a task-guided
utility of a researcher, while taking
into consideration the researcher’s
goals, state of inner knowledge, and
preferences.

Progress has recently been made in
building such sy yet fund

hall r in F ional
repr ion and synthesis of scientific
k ledge, and in deling the diversity
of human tasks, contexts, and cognitive
pr i lved in ing and
producing scientific k ledge.

ILLUSTRATION BY PETER CROWTHER ASSOCIATES
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An inflection point for science

Human-centered Investigations:
e Constrained by human capacity

Data-centric Al Investigations:

e Allow FAIR data, analysis, models

e Enable Al data analyses

o At multiple stages
Time
sample science:
$ years!
tool
data '
‘ Write paper
Store in computer Intergi?:n:?;suus
Scientist Share
‘ 1 Analysis?
Locate metadata Accu";‘:i':::s:esu"s
Scientist t Share
datasets?
Analyse data Results

Scientist

CWRU &

o P

' o sans human interaction
Time ‘ I..
science: ‘
| sample Ask new questions.
days. ‘ Design next Study Protocol
Scientist
tool

Scientific Investigation

Interpret Results in context of

%

—>
\ Data Models

\

FA| R data Scientist
Data auto-ingested to Al Analytics:

CRADLE D/HPC

4

All data, metadata, models
integrated & findable

ﬁ

1

MDS? COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu DE-NA0004104

Models find Data to train on
Data find Models to train

Automated Analysis Pipelines
Al, finds new data

st

Write paper
Share code

FAIR Data-centric

Analytics

23
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Outline: Common Research Analytics & Data Lifecycle Environment

CRADLE Computing & Analytics
e Hardware, Frameworks, Middleware & Automated Pipelines
e FAlRIification: Making Data & Models FAIR
CRADLE Data Lifecycle
e Scientific Investigations, Study Protocols & Materials Data Science
Spatiotemporal-Graph (st-Graph) Learning
e Timeseries Imputation & Trend Estimation
Geospatial Data Science
e Eutrophication: Motion of Nitrogen Through Watersheds
Synchrotron 2D X-ray Diffraction HEXRD: Automated NN Analysis Pipelines
e “Scientist Ground Truth” Learning Approach
e Kinematic Diffraction Forward Model Learning
3.5D X-ray Computed Tomography: Pipelines & Spatiotemporal Feature Extraction
e Observing Pitting Corrosion of Aluminum Wires
e Al:Mg Alloy: Stress Corrosion Cracking

Conclusions

CWRU ¢ )
ECH 3 ps://mds3-coe.co p://sdle.case.edu DE-NA0004104

MDS?® COE, SDLE Research Center, Roger H. French © 2023
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

CRADLE Computing & Analytics:

Hardware

GS: Arafath Nihar', Olatunde Akanbi', Tommy Ciardi’, Tian Wang'
UG: Rachel Yamamoto', Rounak Chawla', Hayden Caldwell',
Faculty: Yinghui Wu', Vipin Chaudhary’, Roger H. French'2

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
< CWRU & s coE
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Horizontal Scaling vs Vertical Scaling

Horizontal Scaling:
e Add more machines
e To increase capacity

Distributes workloads
e Across multiple machines

Increases redundancy
e And fault tolerance

Generally more cost-effective

Vertical Scaling Horizontal Scaling
(Scaling up) (Scaling out)

CWRU &
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CRADLE Compute Environment: Distributed & High Performance Computing

Running in CWRU’s HPC Common Research Analytics & Data Processing Environment
e Pioneer (RHEL8 OS) Q """"""""" 2 ,;f_'V"znv'llozm:";{l;er" m ooty Y
e Markov (DSCI Teaching Cluster) 5 | :
Dist. Comp. Frameworks #"4 6th Floor '
e Apache Hadoop, Hbase, Spark J <o a ———
e Apache Ozone, Impala, Ranger, etc owe | T i
e JanusGraph, GraphX .
Cloudera Data Platform Y :
e Commercial supported distribution [_1536 o0
e Of Apache Hadoop/Hbase/Spark/....gm '+ + —€5 Eremet] EHEE B
B 5th Floor e
OnDemand Containerized Apps m @ =« A . T
. 540 550 1 ' HERSE Sparl HERSE Spar
e Using Ubuntu 20.04 OS % e s
Able to train 100s 1 :
of Deep Learning Models ~ CWRU SDLE Research Center NEEEEEES

CWRU HPC

CWRU &
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CRADLE Hardware: HPC Scaling up

S[: d

e UP

Pioneer HPC: 5912 cores
e 32 gpu nodes

Markov HPC: 1240 cores
e 16 gpu nodes

One Compute Node

Up to 40 cores

Up to 1Tb RAM memory

Nvidia v100

Up to 32 GB of GPU VRAM

HPC Compute Model .
e Lots of FLOPS

e But Limited, Expensive Data Storage

“CWRU &
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CRADLE Hardware: HPC Scaling up

& 2 >/ﬁ ]

Nvidia AISC: 32 integrated GPU nodes
e 4 Nvidia DGX Pods, of 8 A100 GPUs
e 2.56 Tb GPU VRAM
e 4 Tb of RAM memory
e 15 Tb NVME storage

Pioneer HPC: 5912 cores
e 32 gpu nodes

Markov HPC: 1240 cores
e 16 gpu nodes

One Compute Node

Up to 40 cores

Up to 1Tb RAM memory

Nvidia v100

Up to 32 GB of GPU VRAM

HPC Compute Model
e Lots of FLOPS
e But Limited, Expensive Data Storage

S5C

C

bl

e UP

CWRU &
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CRADLE Hardware: Distributed Hadoop Scaling Out, for CRADLE 3.2

4 Name Nodes 15 Data Nodes
e 224 Cores e 840 Cores
e 2 Tb of RAM memory e 3.84 Tb of RAM memory
o 216 Tb Storage e 1.92 Pb of Storage TB
: = Y= Vi e 30 NVIDIA Ampere A2 GPU

= 1 95 Pb of storage

—

“CWRU &

CRADLE D/HPC
e Dist. Compute
o 2.5 Pb Cluster
o 7 TB Ram
o 1164 CPU Cores

o 30 GPUs
m 480 GPU VRAM
m 384k Cuda Cores
m 1.2k Tensor Cores

e High Perf. Compute
o 7152 CPU Cores

e Nvidia AISC 8-DGX
o 2.5Tb VRAM
o 4Tb RAM
o 15 Tb nvme storage

Scale Out
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CRADLE Hardware: Distributed Hadoop Scaling Out, for CRADLE 3.2

4 Name Nodes 15 Data Nodes CRADLE D/HPC
e 224 Cores e 840 Cores e Dist. Compute
e 2Tb of RAM memory e 3.84 Tb of RAM memory o 2.5 Pb Cluster
e 216 Tb Storage e 1.92 Pb of Storage TB o 7TBRam
M T e 30 NVIDIAAmpere A2 GPU o 1164 CPU Cores
S o 30 GPUs

m 480 GPU VRAM
m 384k Cuda Cores
m 1.2k Tensor Cores

e High Perf. Compute
o 7152 CPU Cores
e Nvidia AISC 8-DGX

from Don Brown @ LANL
*~217Tb

e~ 4.5 million HEXRD images
* In-situ heating, texture, strain

(XY, 2)

analysis of Ti-6Al-4V at CHESS, o 2.5Tb VRAM
* Wire arc additive manufacturing |_ o 4 Tb RAM
of stainless steel etc. o 15 Tb nvme storage
Scale Out

-
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Distributed Computing: Cloudera Data Platform Distribution

Hadoop Distributed File System
e HDFS Storage

PROCESS, ANALYZE & SERVE

BATCH sqL STREAM | SEARCH
ApaChe Spark: I%/lparl};.}(;iivt-x Impala Spark Solr
P . . apReduce
e Unified analytics engine for
large-scale data processing UHIEIEE SEr e

Apache Impala:
e Massively parallel processing

RESOURCE MANAGEMENT SECURITY
YARN Sentry, RecordService

SQL query engine
FILESYSTEM RELATIONAL
Kerberos: i s
e User authentication protocol STORE

CWRU &
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

CRADLE Computing:

Frameworks, Middleware & Automated Pipelines

[ OPEN ] Web-based Access to Cloud & Softwares
nDemand

OnDemand provides an integrated, single access point for all of your HPC

Pinned Apps A featured subset of all available apps

GS: Arafath Nihar', Olatunde Akanbi', Tommy Ciardi', Tian Wang'
UG: Rachel Yamamoto', Rounak Chawla', Hayden Caldwell’,

Faculty: Yinghui Wu', Vipin Chaudhary’, Roger H. French'-2

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

)

CWRU ng DE-NA0004104 f 33

MDS? COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu



https://mds3-coe.com
http://sdle.case.edu/

The “NoSQL” Database Abstraction of Hadoop/Hbase: RDF Triples

Columnkey

(string) 00 ® O

g(g o % P ® 1 2
b(_s‘{,?,l‘;‘f;_, .\(; } 3 @JOJO! —>» (O3 4
inary obj.) ‘ @ @ ‘ 5 6

HBase RDF ‘Triple’

Rowkey
(string)

Combines Lab data (Spectra, Images, Videos etc.)
With Geospatiotemporal Data (PV Power Plant Data)
Distributed & High Performance Computing:
Petabyte Data Lake In A Petaflop HPC Environment
In-place Analytics: Distributed Spark Analytics in Hadoop/HDFS/Hbase
*In-memory Data Extraction: To Separate HPC Compute Nodes

A non-relational data warehouse for the analysis of Aytomated pipeline framework for processing
field and laboratory data from multiple

of large-scale building energy time series data
heterogeneous photovoltaic test sites

Yang Hu, Member, IEEE, Venkat Yashwanth Gunapati, Pei Zhao, Devin Gordon, Nicholas R. Wheeler, Arash Khalilnejad'®, Ahmad M. Karimi>®, Shreyas Kamath'®, Rojiar Haddadian?®,
Mohammad A. Hossain, Member, IEEE, Timothy J. Peshek, Member, IEEE, Laura S. Bruckman

. , Roger H. French@?*°*, Alexis R. Abramson®*¢*
Guo-Qiang Zhang. Member, IEEE, and Roger H. French, Member, IEEE

U IEEE JPV, 7, 1, 2017 /2
. ‘ WRU(haIII d etal, , PLOS ONE. 15 (2020) e0240461.
UCF
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Multimodal Hadoop Cluster for Heterogeneous Data

CRADLE’s Hadoop cluster prioritizes the scientific data workflow
e |everages a unique combination of open source technologies
e To manage heterogeneous data at scale (Petabytes)
e Prioritizing multi-modality, reproducibility, and security

,,,,,, J‘z e Multi-modal Processin

SparkK: ( } BN Sedena ﬁﬁGraph/\/ (=5 JanusGraph g
Lightning fast Petabyte scale
% Parquet - Triples H_}1= {ijson} PO TIFF data pipelines
(z/‘ GRatisleone HEAS EA e Multi-modal Storage
CRADLE 3.1 CRADLE 3.2 1.9 PB Storage CRADLE 3.3 Low latency queries for
36 CPU 1064 CPU 30 NVIDIA Ampere A2 SSACRS
768 Gb RAM 5.8 Tb RAM 480 GB GPU Memory 512 E5 [AY, heterogeneous data sets
456 TB Storage TS VB SEEES

HDFS Base Storage

raw data lake for provenance
and reproducibility

<

NVIDIA

CWRU &
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Example: Apache Sedona for Handling Geospatial Raster Data

) Spatial SQL ——— —_— —_—
Scala/ Java (SQL-MM3, OGC) Python R

SEE——

Spatial Query Processing Layer
Vector @\ Spatial Range | = Spatial KNN Sgatial Join Spatial ML

Raster @ - Map Algebra NDVI Mask

i g it

Distributed Spatial Datasets

AN
Batch Geometrical Transformation Spatial Data Compression
o0
StreamD‘_é ‘ Spatial Partitioning Spatial Indexing H Spatial Statistics

Computing
engines

Spatialdata /4711 GEOJson WKT/WKB
PEF|

formats R . _
27 %y Parquet

iy
geohashes

CWRU &
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CRADLE Middleware

Complex computational tools made easily accessible through simple Python & R interfaces

CRADLEtools CRADLEsgis SDLEfleets

Apache tool wrapper for simple
interactive queries

desired
metadata

Example:
return all
power
l plants with
weather

D data
2018-2020

((((((

RRRRRR

Input

R coord and time

AP call

JSON
|

RRRRRR

clean / format

nnnnnnn

Submit 1000’s of compute jobs
through a single function call

R@&

Parquet

. I.I
slurm jobs  .::f::.
created

nnnnnn

CW RU g’ 'https://slurm.schedmd.com/
UCF

MDS? COE, SDLE Research Center, Roger H. French © 2023
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SDLEfleets Package: Fleets of ML Jobs

SLURM (Simple Linux Utility for Resource Management) . O .
e allocates and releases computational resources - O 1
e when available to jobs in its queue .ca088,

Drawbacks: I
e User unfriendly for data scientists (requires proficiency with shell scripting) 5 U rm
e Difficult to scale workload manager

e No aggregate job status checking/error reporting
SDLEfleets Package

e A scalable Python and R interface over Slurm Feduoue
o for job fleet submission & management | oo | . N "
o Key features: ‘
o Integrated with other HPC tools | @

m (pyCRADLEtools3/rCRADLEtools3)
Simple workflow

Containerized A | : : »slurm_status
Improved and aggregated logging (json) ‘ ' '
Job requeue

Input CSV —+ sdle_slurm > Job2 log2 ——

o O O O

Python/R Script-

> Jobn —» Logn [ |

CW RU 1rvs;&://slurm.schedmd.com/
; UCF

MDS? COE, SDLE Research Center, Roger H. French © 2023 ps://mds3-coe.co ://sdle.case.edu DE-NA0004104
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Data Processing Infrastructure: A Data Analysis Pipeline (Python or R)

Lab Collaborator

B A

CWRU HPC

Storage

A

metadata

No-SQL Distributed
atabase

{data "}

e CRADLE

The Hadoop Distributed File System

images

'
CUDA. TensorFlow

y

Python

ﬁ —{ Tensorflow

MR W

&

Hadoop Cluster

Nucleation & Growth of AIN Crystals
e 1 million images of Al/Ni Melt

CWRU &

Percentage Crystalized
o 8 8 8 8 8 8 3 8

results

Hbase Tables

Frame#

MDS?® COE, SDLE Research Center, Roger H. French © 2023

CRADLE infrastructure

NoSQL database
* Apache HBase

Object storage

* Apache Ozone
HPC environment

* Nvidia GPU acceleration for deep learning
Python/TensorFlow

[1] M. Adachi, S. Hamaya, D. Morikawa, B. G. Pierce, A. M. Karimi, Y. Yamagata, K. Tsuda, R. H. French, H
Fukuyama, Temperature dependence of crystal growth behavior of AIN on Ni-Al using electromagnetic
levitation and computer vision technique", Mat. Sci. in Semicon. Proc., 153, 2023, 107167, ISSN 1369-8001,
https://doi.org/10.1016/j.mssp.2022.107167 .

[2] A. Khalilnejad, et al., “Automated Pipeline Framework for Processing of Large-Scale Building Energy Time
Series Data,” PLOS ONE, p. €0240461, Dec. 2020,

https://journals.plos.org/plosone/article?id=10.137 1/journal.pone.0240461 .

[3] Masayoshi Adachi et al., “In-situ observation of AIN formation from Ni-Al solution using an electromagnetic
levitation technique,” J Am Ceram Soc, p. jace.16960, Jan. 2020,

https://onlinelibrary.wiley.com/doi/abs/10.1111/jace. 16960 .
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

FAIRification: Making {Meta}Data & Models FAIR

Unstructured Dat
nstructure ata Structured Data

JSON-LD

“Data is messy and disconnected.
JSON-LD organizes and connects it,

GS: Alexander Harding Bradley', Priyan Rajamohan’
UG: Jiana Kambo', Hyangmok Baek'
Postdoc: Erika |. Barcelos?

Faculty: Yinghui Wu', Roger H. French'-?

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
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Traditional Scientific Investigations versus FAIR Reproducible Science

Today’s Research...
Each user defines

CEEEE their own “naming”
Question ) 9
convention
Experiments/ Metadata stored
Simulations in log books

Data stored Data not findable
locally by computers

Data shared by No metadata
email description

Data gets lost
or become non-reusable!

Findable

e Should be findable by humans and computers
e Detailed descriptive metadata
e (Meta)data assigned to a globally unique and persistent identifier

Accessible

e (Meta)data accessible even when data no longer available
e (Meta)data retrievable by their identifier using standardized protocol

Interoperable

e (Meta)data use formal, accessible, shared, knowledge representation
o (Meta)data follows FAIR domain ontology & references other metadata

Reusable

e (Meta)data are released with a clear & accessible data license
o (Meta)data meet domain-relevant community standards

8)

CWRU &
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PDMco Mid-level Ontology

Separated Processes & Data Semantic Data Integration Interlinked Processes & Data

0. &

Shos . Semantic Gaps

@ +f

Heterogenous i )
Weakly Structured IE ]

Missing Context

i Application Ontologies
Inaccessible Aligned to PMDco

Interoperable
Well Structured
Reproducible

« Reliably Reusable

MSE Mid-Level
Ontology

anns, aaasas
"-n '

\IRness of Materials and Process Data

St 6'\‘:;\’4

B. Bayerlein et al., “PMD Core Ontology: Achieving semantic interoperability in materials science,” Materials & Design, vol. 237,
p. 112603, Jan. 2024, doi: 10.1016/j.matdes.2023.112603

“CWRU &
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“Bi-lingual” R & Python Package: With Common JSON-LD Domain Templates

FAIRmaterials Package website
e https://cwrusdle.bitbucket.io/
~ 30 Scientific Domain Ontologies

e Defined by OWL Files
e And 1 Combined OWL file

48 json-ld templates
e For these domains
~ 30 domain documentation vignettes
e How to FAIRIfy for that domain G

Towards automation of
JSON-LD & Ontology

Creation and validation

e No existing tools for this purpose
o Manual work
e Now automating with RDFLib & PyLODE

" o mmm o o o s m—

”-

CWRU &

7’

FAIRmaterials '
Find the docs

Vignettes: Example Documentation == * ==

Domain Ontology .owl files

[TTTTTTTTTTTTTTITTITTITT]d

~

.

asterGdem.html

buildings.html
capillaryElectrophoresis.html
computedTomographyXRay.html
diffractionXRay.html
environmentalExposure.html
geospatialWell.html

index.html
json-1d-owl-FAIRification.html
materialsProcessing.html
metalAdditiveManufacturing.html
opticalProfilometry-vignette.html
opticalSpectroscopy.html
photovoltaicBacksheet.html
photovoltaicCell.html

— e - e - e - e m—— o

~ photovoltaicInverter.html
Domains JSON-LD 'S photovoltaicModule.html
| oy photovoltaicSystem.html
St polymerAdditiveManufacturing.html
Python Package Function Documentation ‘S polymerFornulation. html
: '~ soil.html %
R Package Function Documentation b i streamwWater.html /7
o N 5 g i, ] ) o
~
o e o mmm s mmm s e W R w8 oy i
terGdem- json-template.json * S I R el S L B
as - - 3 4
buildings-json-1d-template.json \ asterGdem. owl

capillaryElectrophoresis-json-template.json
computedTomographyXRay-json-1d-template.json
diffractionXRay-json-1d-template.json
environmentalExposure-json-1d-template.json
geospatialwell-json-1d-template.json

index.html
materials-processing-json-1ld-template.json
metalAdditiveManufacturing-json-1ld-template.json
opticalProfilometry-json-1d-template.json

.
. fairMaterials.owl
.
opticalSpectroscopy-json-1d-template.json |
.
.
!

geospatialWell.owl
index.html

photovoltaicBacksheet-json-1d-template.json
photovoltaicCell-json-1d-template.json
photovoltaicInverter-json-1d-template.json
photovoltaicModule-json-1d-template.json
photovoltaicSystem-json-1ld-template.json

[TTTTTTTTTTITTTTTTTTIN

streamwater.owl

/
|

T mmm s omm s omm o o o omm s

materialsProcessing.owl
metalAdditiveManufacturing.owl
opticalProfilometry.owl
opticalSpectroscopy.owl
photovoltaicBacksheet.owl
photovoltaicCell.owl
photovoltaicInverter.owl

capillaryElectrophoresis.owl .
computedTomographyXRay.owl
diffractionXRay.owl
environmentalExposure.owl

polymerAdditiveManufacturing-json-1ld-template.json photovoltaicModule.owl
polymerFormulation-json-1d-template.json photovoltaicSystem.owl
soil-json-1d-template.json polymerAdditiveManufacturing.owl *
streamwater-json-1d-template.json polymerFormulation.owl

Y it Y it B it o it it ) + |— soil.oul

.

’
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CRADLE FAIRification & Data Science Workflow Pipeline

Datasets shared on osf.io
with the community

OSFHOME ~ Search  Support

(QEVEDRRETEWGRCIEE Metadata  Files  Wiki - Analytics  Registrations

SignUp  Signin

@ CWRU SDLE Research Center

SHRE

Contributors: R

Affiliated institutions: Case West 4 ersity

Date created: 2019-03-2510:34 AM | Last Updated: 2023-06-04 06:41 PM
Identifier: DOI 10.17605/0SF.IO/WN35)

Category: @ Project

Description: from CWRU SDLE Research Center

| (M Lawrence Livermore P
National Laboratory

« Los Alamos
NATIONAL LABORATORY

Sandia
'11 National
Laboratories

T CGr

FAMU B £y A
solan®RE & My, /oy

i )4 N W N_-_.__“}- \ il
Brookfield .o

‘SE-ResNext101-32xad

FAIR Cycle
Of Science Al/ML!

BotteNeck Block

— Outputlayer — Upsampling

Encoder Decoder

Open source tools to community

FAIRsaterials: Make Materials Data FAIR

y the Solar Durablty and L ifetime Exte ter(SDLE) for FAIRfying data

cessib, neroeral, and Reproducie.

fairmaterials 0.4.0

pip install fairmaterials

PVplr: Performance Loss Rate Analysis Pipeline

The pipeline contained in this package provides tools used i the Solar I
feature correction, power predictive modeling, PLR determination, and
usage. This material is based upon work supported by the U.S Departme
of the High Performance Computing Resource in the Core Facility for Ac ... -

Data ingested at

“DATA

Renewable

“CWRU £

CRADLE/HPC

MDS?® COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu DE-NA0004104
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Linking Data in a Domain for Efficient Pipelining & Modeling

Metadata and data are linked by unique ids
e associated to the user’s ORCID
Dataset generated from the results & postprocessing
e stored in a dataset JSON-LD
o Metadata of the dataset Models
Models JSON-LD store modeling parameters
e Images, Architecture, Cross Validation, model, etc
Materials Science Domain

JSON-LD JSON-LD JSON-LD JSON-LD JSON-LD

JSON-LD

sample tool recipe results post processing

— Dataset
orcid-idrecipe orcid-idresults CIECHE .
postprocessing
orcid-id dataset

orcid-idtool

orcid-idsample

orcid-idresults orcid-idresults
. . . . g orcid-idrecipe
Data linked by orcid-uniqueldentifier orcid-idtool

orcid-idsample

CWRU &
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Development of Domain Ontologies: Knowledge Graphs

Apache HBase: ® o
e Data Storage and C‘;L‘f:,?gfy '\ \ .\ /. o .|,
° Repres_ented in RDF _Trlples L | valié(sting ot ./ 0/ :> ® | s

Onotologies created in OWL language P 8 binary flle) .\ ) r o r ® 5| s
e Builds on top of RDF (String) .

Hbase Triple

e Extends RDF for complex knowledge & reasoning

e Provides a more expressive language < 7 JanUSGraph

o And larger vocabulary

Creation of Ontology-driven Knowledge Graphs
e JanusGraph Distributed Database
o Scalable graph database optimized for
storing and querying graphs
containing hundreds of billions
of vertices and edges
distributed across D/HPC CRADLE

Khalilnejad A, et al., Automated pipeline framework for processing of large-scale building energy time series data. PLoS ONE 2020 m15(12): e0240461.

:“ ( WRU gﬁ W. C. Olijen, et al., “FAlRIification, Quality Assessment, and Missingness Pattern Discovery for Spatiotemporal Photovoltaic Data,” IEEE PVSC, 2022.
. UCF
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Development of Domain Ontologies: Knowledge Graphs

Apache HBase: RDFs is a cold watery coffee, = B
hile OWL is a hot espr @
e Data Storage and = lle OWL is_a hot espresso Columnkey '\

[y

| (String) \ .\ /. ®

Onotologies created in OWL language oy i binary file)

e Represented in RDF Triples Value string or ./ ./ :> e
o/ f o\f
e Builds on top of RDF (String)

a |~

v W

e Extends RDF for complex knowledge & reasoning HPase Triple
e Provides a more expressive language < \ JanUSGraph
o And larger vocabulary ’

Creation of Ontology-driven Knowledge Graphs
e JanusGraph Distributed Database
o Scalable graph database optimized for
m storing and querying graphs
m containing hundreds of billions
m of vertices and edges
m distributed across D/HPC CRADLE

- Khalilnejad A, et al., Automated pipeline framework for rocessm of large-scale butld/n ener t/me series data. PLoS ONE 2020 m15(12): e0240461.
:“ ( WRU QQ] W. C. Oltjen, et al., “FAIRIfication. Qualit:

oral Photovoltaic Data,” IEEE PVSC, 2022.
Ul MDS? COE, SDLE Research Center, ~

.edu DE-NA0004104
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2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

CRADLE Data Lifecycle:

Scientific Investigations, Study Protocols &
Materials Data Science

GS: Kristen Hernandez', Hein Htet Aung’, Ayorinde Olatundei?,
Arafath Nihar®, Olatunde Akanbi', Tommy Ciardi®, Tian Wang?,
UG: Rachel Yamamoto®, Rounak Chawla', Hayden Caldwell3,
Faculty: Anirban Mondal', Laura S. Bruckman', Yinghui Wu?,
Vipin Chaudhary®, Roger H. French'-2

1. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
2. Department of Computer and Data Sciences, CWRU, Cleveland, OH
3. Department of Mathematics, Applied Mathematics, and Statistics, CWRU, Cleveland, OH

( WRU gﬁ DE-NA0004104 ) 48
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Scientific Investigations: Study Protocol Pipeline Schema

4 N\ "
IdenLEify I!Eetsx(;:'arch Que?tion t
Abnorgai\;itf?aztlzndard B Kn OWI edg e
¥ Management &
( Scientific ) Materials Data Science Learning
. Investigations !
% Experimentation . . <
P Data FAIRification 5 »
T .
E el Data Curation & Ingestion Statistical Learning
(74
> . . . .
» | Production Optimization | Exploratory Data Analysis TR T,
Aging & Lifetime .
Deep Learning
Surveillance ! -
- VAY VAN y
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CRADLE Frameworks: Enabling Materials Data Science

R @ puython T TensorFlow O PyTorch

O git

spaks

\} Impala &ﬁGraphX G JanusGraph

> — :
(sj Singularity @ Ubuntu g O D BC NVIDIA SSL //;,//g}' pa rq uet ! Triples LN { Jjson } /ﬂl’lFF
UDA A
.8s
RedHat P o AP ACHE a
Q = Lmod slurm Crlpgee HERSE A (T oo
CWRU HPC 38.72 Tb RAM CRADLE 3.1 CRADLE 3.2 CRADLE 3.3
7152 GPU 104 GPU e oZCRU & Qumulo 36 CPU 1064 GPU e 64 CPU
i 1.4P) 768 Gb RAM 5.8 Tb RAM 480 GB GPU Memory 512 Gb RAM
4Tb RAM Memory -1FB 456 TB Storage 97.6 TB Storage
e ~
g1 PANASAS
} 75078
: KERBEROS
DIGITAL DIVISION
! (727077 ] E
. @2 «D 211001 ) OpenZFS @2 )
|nte| ol NVIDIA. % 15PB NVIDIA |nte|

e Combined Distributed & High Perf. Computing

e Distributed Computing to reduce Data Motion

e Integrated Al Engines such as AISC

e Permanent Data Storage: To enable data curation

e “Low Barriers To Entry” Accessible Data Science Tools

CWRU &

MDS?® COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/
https://app.diagrams.net/?page-id=Cz8eQGEoU7dnSojKtDmB&scale=auto#G1sM29d_ti2IzA3To3XCbfVEFeS7bhf-qB

A Containerized Environment for Researcher Ease of Use

Containerized environments enable: Cloud based container building pipelines
e Researchers: To use CRADLE e Ensures features and fixes
o  without extensive compute training e Are released to production
e Group: consistent tools/code packages o For the entire research group
o  for an entire team e Users don’t need to manage dependencies
Dev Tools From a single source
@ M-tbreres e Using our Container Registry
[ R ) - O 1[ ‘ v
s (%) L
S © %’:;:E;‘\r Client PC

&

docker

S B

Bitbucket Cloud E

Comlai.n'er Image Cloud Google' Storage HPC
Definition Files Cloud Build Servers

“CWRU &
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OnDemand Apps: Using Containerized OS & Applications

CWRU HPC OnDemand Web Portal

Containerized environments enable:
e Researchers: Use CRADLE
o Without extensive compute training
e Group: consistent tools/code packages
o For an entire team

Browser access to CRADLE D/HPC
e Pre-configured data science environment

Easy Access to CRADLE D/HPC
e Storage, CPUs & GPUs

Providing
¢ Integrated Development Environments: R/Python
CRADLE Data Explorer
SDLE Diagnostics
o Web app to detect & fix infrastructure issues
e WebVOWL & JSON-LD Servers: FAIRmaterials

SDLE Diagnostics

Shared by Roger
French (rxf131)

—

Shared by Roger

French (rxf131)

—

WV

CWRU &

WebVOWL Server

Shared by Roger
French (rxf131)

OnDemand

OnDemand provides an integrated, single access point for all of your HPC resources.

(2}

Jsoneditor

Shared by Roger
French (rxf131)

RStudio Server

Shared by Roger
French (rxf131)

Code Server

Shared by Roger
French (rxf131)

Pinned Apps A featured subset of all available apps

s
Jjupyter
®

Jupyter Tensorflow
Federated

Shared by Roger
French (rxf131)

%

Tensorboard

Shared by Roger
French (rxf131)

=3}

JSON-LD
Playground

Shared by Roger
French (rxf131)

o=
Jupyter

®
Jupyter Labs

Shared by Roger
French (rxf131)

Jupyter

®
Jupyter Notebook
(Tensorflow 1)

Shared by Roger
French (rxf131)

CRADLE Data
Explorer

Shared by Roger
French (rxf131)
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CRADLE Data Explorer: PV Systems, {meta}data, Quality

CRADLE Data Explorer PV Sytems XRD

PV Data Explorer R code to fetch pv meta data

Ingest 100,470

Photovoltaic Systems t
e To CRADLES3 = | G
o Into HDFS
o As Parquet Files
e Using Apache Spark3 8 ¢ e

Distributed Across ® @ bict e ol

2617
2134

L] 1000 CPUS W,Nzo?.om Show 10 v entries Search:
e 100 HDDs 17:1 8. e dtyp  styp latd lond rowkey kgcz  mods
Los Ar

1 pp ss1 19.83 -155.79 b0580cn Cfb 6be77d805385e0735¢1b0572
0 2462
ApaChe Impala ) 2 pp ss1 19.93 -155.79 cn78irs Cfb f7bc2d4a7e6a9aee37b9beea
701
H 5 B ss1 19.93 -155.79 qwfuo80 Cfb f7bc2d4a7e6a9aee37b9beea
e For SQL Queries . ” !
P .d C d b MegKo a Habana P 4 pp ss1 2133 -157.9 wx8Ir7g As f7bc2d4a7e6a9aee37b9beea
iuda Cuba.
roviae odebox uf»a@e'xfiv Republic 5 pp ss1 2134 -157.9 admwbbm As 850dbf76696f7dda65911489;
. . 5 Dominicar 50
L] FOI' CUStomlzed QuerleS Kingston 6 pp ss1 2136 -157.95 pimgpdv ~ As f7bc2d4a7e6a9aee37b9beea
Ciudad &' {Hondura
- de Guatemala
el 7 ss1 2136 -157.95 pkupb0of  As f7bc2d4a7e6a9aee37b9beea
Retrieve All Metadata s PP Pe
. Caracas 8 pp ss1 2719 -824 1229550 Cfa f7bc2d4a7e6a9aee37b9beea
e Data Quality Heatmap
Available PV Systems in CRADLE Heatmaps of selected pv system data
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Interactive 3D Plots of XRD Diffractograms

e Securely query data from CRADLE
e And interact with it in your browser

4% Publish ~

u ¢
0,
CRADLE Data Explorer

XRD Diffractogram Sample

CWRU &
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CRADLE’s D/HPC Architecture Offers Next Generation Capabilities

HPC and Hadoop J o4 4.
hybrid infrastructure laptop 1-2 runs 1-6 GB datasets
enables the ability to
handle next In one night a
generation scientist can HPC >~ 1000 runs ~ 2 TB dataset
datasets train on...
Raw compute and CRADLE | 10000+ .
distributed (HPC/ Hadoop) | runs ylLla Uil

Cagabilitym Data Diversity Distributed | Reproducible
o L I
L

Fair

Good
CRADLE

CWRU &
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CRADLE Data Science Modeling & Learning Framework

How do we find the best possible model and make our efforts reproducible?

Save Evaluat del ) ‘%—“
S g! . FAIRified {ﬂ} sallsi eclels A
data and T R e model T et F
metadata .-ﬂ—- - outputs Model agnostic =~ oo
s g
“ | & o & ( Modality specific “ .
* Spark: } Impala m@aphx
In Memory Data Engine
%  Apache Ozone g. vNo»SS;;)biztsr:)uted
Reshape/Rescale @ object storage J:Ses LEESE G JanusGraph
p—— . |dentify best
process & Save _> Raw Data mThe Hadoop Distributed File System ' model and — R
1 —>
augmented vectors % a ﬁ! i ﬁ ® write back
Name No d Data Nodes \
Batch & - Neural network ¢ & [ ' Experiment
Load fleet - - architecture search ‘.T.::.;.; tracking
pretrained training . —p > -
...-. ~ ) !
encoders o 3e@al;, Hyperparameter o e A .
models  slurm - Y AR Sy
workload manager tu n I n g N

“CWRU &
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MDS3-COE’s: Knowledge Graph Learning Framework

Metadat? Ontologies \ 6 ects, Observations & Pro er@\
RDF triples, JSON validat (instances)
(abstractlon/semantlcs/constralnts) P aldare N\
N L4 temp: 50°C
‘ curate (@) size:
1umx 1 um

Raw datasets _

Image/videos, design data, ";c;’_;"
@ t(I)( ::Vt‘/?e?agiig;aﬁon linked ... to create Al/ML ready
g g entities data resources
enriched
Scenes or st-Graphs featu,eﬁ/ Summary Graphs \
(represent?:ﬂons) ! (patterns)
o o
2
\Z
000 . .
. cost-effective learning R correlation: 0.8
4 (‘ ')
efficient access & interpretation

Deep st-graph representation learnin ... to cost-effective data access,
&o inferential & predictive models N\ analysis & interactive exploration /

erH French et al., “Fairmaterials.” The Python Package Index (PyPI) Oct. 08, 2021,
Q [2] W|I am C. Oltjen, ‘FAIRmaterials: Make Materials Data FAIR.” CRAN, Sep. 14 2021
9] [3] A. M. Karimi, et al., tiotemporal Graph Neural Network for Performance Prediction of Photovoltaic Power Systems,” in Proc. of AAAI,, 2021

UCF
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https://ojs.aaai.org/index.php/AAAI/article/view/17799

MDS? Data to Knowledge, Knowledge to Workflow Framework

e ar |nSl9 hts Influential model: “scene Knowledge to Workflow
Age & Lifetime ' Adv. Manu prediction for crystal. Kinetics B == 7a(=) o) 1.4 (mQ-KZFIOW)
o <> ? of fluoropolymers” (Proj A)

~—>
DS3-WF
(Stockpile. Surv. ™ R Wlorki;lng .
—— eclaration
e ~N\ - 'rt M”‘-Aﬁl Assembly
images(HEXRD/XCT), 4 3, N\
video(AFM) %.\% MD"-Onto MD?-KN (Knowledge DS3-Track ‘ ,
historical data, Thesaurus, Knowledge Network of Networks)
R . FAIRiIfication Taxonomies Extraction
in-situ data, ex-situ data - - o
: ’ - ' Ontologies, & fusion Aging & Lifetime

experiments, scripts... => || Weaces / Knowledge (AL-KG)

i? ~ | Adv. Manufacturing

Knowledge (AM-KG)
Featurization
: \L
Objects, - ML/Al models, Rules,
Features, 5 Policies, Provenance...
MDS:- Relations Stockpile Surv.
Knowledge (SS-KG
EAIR _ CRADLE ) gel ) DeepMDS? l
. Data to Knowledge
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3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

Spatiotemporal-Graph (st-Graph) Learning:
Timeseries Imputation

& Trend Estimation

Sandia
National Cc2
Laboratories ; i
GS: Yangxin Fan', Raymond Wieser'

S U N P W E R® UG: Jiana Kambo', Hyangmok Baek'

Faculty: Yinghui Wu', Laura Bruckman?, Roger H. French'2

V1 Broo kfiel d 1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
:(‘ SO I a r‘ =Te(e[= 2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
CanadianSolar Renewable ﬂ[ Award No: DE-EE0009353

@. Karimi, Y. Wu, M. Koyuturk, R. H. French, “Spatiotemporal Gral}))h Neural Network for Performance Prediction of Photovoltaic Power Systems,” in f h
‘ WRU ceedings of IAAI-21, Virtual, 2021. E-NA0004104
UCF
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Large Scale Photovoltaic Fleet Monitoring: 104,700 PV Systems

1 L S N
s % {’
wl NV
\‘? L
AT, @L._ Wb, v T e
“' Vi
Climatic Zone
HHENR @ Gulf of
B AN Mexico Mexico
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PV Network Representation b T o WV @6
Inverters : |

o “Nodes”
o Individual Timeseries

Pittsbm
S

Site “Similarity”
O “EdgeS”
m How much information

m Should connections “share”

Wast in gten

S Morgant
go

- . . - L 9 ": ]
Evaluating “Similarity” RgnERY

o Distance (Spatial Coherence) ; ——— tingion WEST|  Monong
o Cell Type Climatic Zone o SPAVIRGINIARNatoE!
e Cla o Dfa = Db| .
o Nameplate Power : o A Gohorc
DinheAnd Becklev: ¥ Washin

o Benefits from “FAIRIified” datastreams Network Representation of 295 Inverters

(edges sparsified for visualization)

“CWRU £

MDS?® COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/

Why Spatiotemporal Graphs (st-graphs)? =~ ' o °°
Graphs are enhanced data structures with PV systems Zat R
¢ Nodes: e Local Weather SN e
o information about a particular object e System Age bl
e That provide: e Technology :
o information about other objects through e Module Brand v g
o Edges: b T
o through their relationships (“Edges”) T[T Cimatozane [0 VIRGINIA s
st-Graphs have distance-based L > RS ey

Spatial coherence threshold epsilon
o Values between 0 and 1
o epsilon =0.75 (st-GAE)
o epsilon =0.25 (Decomposition)

We have over 100,000 Nodes
e Of Photovoltaic Power Plants
o Timeseries Power data (5 min. interval)
e As st-Nodes ingested -
o0 Into CRADLE infrastructure! -

Ciimatic Zone

CWRU &
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Graph Neural Network Computing at Scale

In a GNN model Hence, large-scale graph learning
e Computing the embeddings of a node is very challenging

o depends on the embeddings of its neighbors ¢ \/anjlla GNN's fails to scale up,
e This leads to exponential growth

o of the number of nodes

o Limited by the GPU memory space

o involved with number of GNN layers Most large-scale graph learning

B IR ) leverage sampling-based methods
i I /\,\/ . o Such as
" a2 | e~ - m neighbor sampling,
d '. e / s adl P + ’.» . m layer sampling, and
| | m random-walk sampling
" é/ ,. .// _. dm::dg o But may sacrifice prediction accuracy

lllustration of message passing in GNN!'!

[1] Liu W et al. Item relationship graph neural networks for e-commerce. |IEEE Trans. Neu. Net. & Learn. Sys., 2021, 33(9): 4785-4799. ﬂ

CWRU &
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Large st-Graph Calculation Benchmarks

Benchmark tests using CRADLE’s Benchmark Results
e State-of-the-art CPUs & GPUs e Model: st-GAE-Impute
Compute 100K? adjacency matrix e Large Scale st-Graph AutoEncoder
e Using multi-processing per compute node o 10k nodes, ~1 million edges
 And fleet out jobs across compute nodes o 1-year timeseries for each node
o Using SDLEfleets package: o  5-minutes interval

m ~19Days — ~2hrs

Training time
Use 1 NVIDIA A100 GPU, 80GB VRAM o Using 1 year of timeseries data
o For large-scale graph learning m 5 min. Interval

m Without subgraph sampling o Runtime: 1 hour 55 minutes
m Epsilon =0.25

AISC is 32 Integrated A100 GPUs! Inference time: For Data Imputation
o With integrated RAM & NVME Storage o On two-months data
o Adifferent, but critical form of o Run time: 56 seconds
m “Converged Computing”

< CWRU & s
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CRADLE Benchmarks Table

Benchmarking compute task performance on HPC versus CRADLE (Hadoop3) distributed computing, with Spark3 and Nvidia
Rapids distributed GPU computing.

Task \ Compute Infrastructure

HPC

CRADLE

PV: 100K adjacency matrix construction
(10 billion distance calculations)

19 days (24 CPUs)

19.1 minutes (Spark3)

PV: 100K PV system graph community detection

8.47 hours (40 CPUs)

5.1 minutes (RAPIDS)

PV: Query 5000 PV systems power data,

N/A (overloads HPC RAM

~1 hour (Impala, Spark3)

from 2.6 billion rows >250 GB)
Image Conversions: 100k . ibw image files to .tiff 11.1 hours 0.62 hours (Spark3)
Image Deep Learning: Hyperparameter tuning: 5.1 days 5.2 hours (SDLEFleets)
Training 240 deep learning segmentation models
Image: Nearest neighbor crystallite calculations 3.8 minutes 1.8 minutes (RAPIDS)

DE-NA0004104
MDS”3, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http://sdle.case.edu
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Timeseries Data Reconstruction and Generative Data Imputation

For PV: Performance Loss Rate (PLR) Data Imputation improves low quality data
e Critical to profitability of asset o Physical Models

Data Quality Impacts PLR estimates o Predictive Mean Matching
e Low Quality Data o Gradient Boosting Regression
(@)

o Low Quality PLR estimation Traditional Imputation Methods
o  High uncertainty, Low accuracy

Da
The stGAE-Impute Framework (
Data Ingestion Data Augmentation Data Corruption STD-GAE ———

Imputation Library —
(Python scripts of KNN, Missing Type LST-BIock Encoder ]
MICE, and LI) (MCAR & BM) ‘

A
- gujde Configuration (missing { =I-BlgskbECOdor ]
Do Domain Knowledge Da rate & length of BM) D¢
- (a set of formulas of -
value dependencies)

Spatial Conv,

Temporal Reconstruction
Conv, and Loss
Deconv

Layers

Dc

pted PV Data; Dr: Recovered PV Data.

Do: Observed PV Data; Da: Augmented PV Data; Dc: Corru

CWRU &
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Data Imputation Accuracy

88
» W
st-GAE 32 Single Measurement ‘f A
. . - E it a A ?l
e Missingness Types g f frors '-7 [ "
o Single Value Corruption 34 M 001713
% 40 N {
o Measurement Outage En L T i : 5,
2 2 f Y £ \
16 ‘lflﬁl‘. 1 .{_ * ] i
. . . " ‘-‘ N :
e Missingness Severity JERERP oL e ‘\’_.__‘
(o] 0, 1 1 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
o 10% - 60% Measurements Missing o0
o 2hrs - 6hrs Inverter Outage Ground Truth  —-Ground Truth of Missing Data Points ~ —STD-GAE
80
72
64 Sensor Outage Model Accuracy
2 e Insensitive
ny 48 t
el . .
§ao o Missingness Types
gz o Missingness Severity
1 - e st-GAE Outperforms

; o Traditional
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time o Deep Learning
Ground Truth  ——Ground Truth of Missing Blocks —STD-GAE

0
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Data Reconstruction: Block Outages & Anomalous Measurements

L o I |

A O K O A N

c
o
=
o
=
S
whd
7
c
o
o
o
14
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Timeseries Decomposition Framework: For PLR Determination

Xi (t) Encodcr/Dccodcr ; ————————————————

: 1 \
o E Structure : 1 GAE,; ) hai(t)
e '

TN M z Aging Decoder —+——>h, - >
N i ’\ | | “\ \ ” L 6> 1
A AN Eg ________________ ’
Locations of PV Inverters ' %e _______________ -
OFF - - GAE 3
ot = ' \ 2
» % Q s Fluctuation Fluctuation

Encoder 1

;
\ \ v
~ “ '
. :
=

1
Decoder 1 ! hf 1 Fleet-level PLR ]

) (EDP and Global PLR)
Matrix(A),. | Y\ X |/ N OQ—kON| /.~ =—=m=m=m=m=== (-;A_E; ------- \
i oo N o I Los P
>
e Encoder 2 Decoder 2 fa {moothises ane £ stnces
EEEEEEEEE o Features (X) 1 regularization)
==Hl}=I==ll=/ ------ e ’
A S e Ny S -
il AL :
Heatmap Representation " lguCtli;"ti‘;zl > lgucm;ﬁol:l —— h oo
ncoder ecoder
| ~ 1
e mm o Em mm o Em Em o Em o o Em o Em o v

e “Parallel-friendly” K+1 GAE (graph autoencoder) blocks
e One aging-term

Extracts the long-term degradation pattern for PLR analysis
e K different fluctuation terms

Captures seasonalities and noises at different temporal resolutions

@)

@)
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Trend Decomposition and Extraction

Performance Ratio

.
o

o
©

o
®

.
o

©
©

o
0

o
N

PVUSA

PV-stGNN-PLR

XbX

XbX+UTC

(PV-StGNN-PLR }x

Z 950)

€ 958)

XbX+UTC

2 4 6 8 10

\___ vear

We compare Estimated Degradation Pattern (EDP) extracted by st-DynGNN
With top six best-performed baselines with Real Degradation Pattern (RDP).

4 6 8 10

e st-DynGNN can better recover real degradation pattern
e EDP extracted by st-DynGNN is the closest to RDP

o in both case 2 and case 3 figures

o followed by XbX+UTC and STGAE2

CWRU &
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Spatiotemporal Graph AutoEncoder Takeaways
st-GAE exploits: st-GAE:

e Temporal Coherence

e Spatial Coherence

e \alue Dependencies

DR, Detected Missingness, Pcorrect

e Obtains superior imputation accuracy
e Retains Raw Data properties

-> Seasonality

-=> Magnitude

e STGAE Model Environment . . .
& & ME: i e Maintains robust performance gains
ommercia Secure < © 1 . .
P\C/ocllaboratorl e = DC|_ Data 9 % M'SS|ngneSS
@ Do Corruption ] .
Research PV farm T s Da N (] -> Seasonallty
Gateway Nodes tDA Co te ) )
T oo Data Nodes e Graph-based Outlier Detection
—_— Augmentation| « .
Lagsi Module - “Learned” from Fleet
eater bats - - Physics Informed Loss
[[111] 1 Edge Node, 2 Master Node, 12 Data Node, ~ . . .
Academic Partners \M Sy —> Data Similarity
[Data Sources | Hadoop & Spark Cluster -
Proposed Workflow in CRADLE ALL at TERABYTE SCALE tabular data!

CWRU &
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Pre-trained Model: Availability

p r-s Office of Scientific and Technical Information
[ ] pypl %) Submit Software/Code A" Repository Services Software Policy = Resources About ? FAQs

o  https://pypi.org/projec
t/PVDIr._StGNN/ PVpIr—stGNN 0.1.10

e DOE CODE
o OSTI 105699 RESOURCE Abstract

Project Landing Page PV Performance Loss Rate Estimation using Spatio-temporal Graph Neural Networks PVplIr-stGNN is a Python 3
. H https://pypi.org/project/PVplr-stGNN ackage developed by the SDLE Research Center at Case Western Reserve University in Cleveland OH. This reposito
o  https://www.osti.gov/ pock e caiSiored &y | /I Clen posiiony
contains the full source PVplr-stGNN package. The package contains the PV-stGAE for missingness data detection
https://doi.org/10.11578/dc.20230429.

doeCOde/blbI |O/1 0569 . and imputation and PV-DynGNN for PLR estimation.

Developers Fan, Yangxin @ '; vy, Xuanji @ ['; wieser, Raymond @ I'1; wu, Yinghui @ ['; French, Roger @ 1"

DOE CODE / Search Results / PVpir-stGNN 0.1.10

9 SAVE / SHARE + Show Developer Affiliations
Export Metadata
2023-03-14
f v = <
Project Type Open Source, No Publicly Available Repository
ype: Scientific

Programming Languages Python

ersion 0.1.10

BSD 3-clause "New" or "Revised" License

e ID 105699
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4. Geospatial, 5. XRD, 6. XCT

Geospatial Data Science J—

Eutrophication:

using NDVI on: 01092016

GS: Deepa Bhuvanagiri', Olatunde Akanbi’
UG: Vibha Mandayam’, Lam Nguyen'
Postdoc: Erika Barcelos

ey Faculty: Yinghui Wu', Roger H. French'2, Jeffrey Yarus?
1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

CWRU ng MDS® COL DE-NA0004104 ﬂ 73

%, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http://sdle.case.edu
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Total Nitrogen, Aggregated yield (kg/km2)

Water Contamination s

Winnipeg

M >305-580
M >580-1,070

T * » M >1,070
CAFOS Seattle .\Y
lagoons ke

Rain, runoff, or faulty \
storage

Vancouver

Agriculture || Manure
runoff

Portland Ottawa

Minneapalis

Toronto

Bul{ Albany

Boston

Providence

New York
Philadelphia

Excess of Oxygen in .
Water s

San Franasco

Washington

Richmond

Fresno

Norfolk
Las Vegas
fulzripiiid
Los Angeles
Phoenix
Algae Bloom
ElP

Proliferation

BIOCk sunlight Nermosile San Antonio Houston

Release toxine Chihuahua Tam,oj:m‘do
Consume Oxygen o5 400k

Dead fish & animals
Economic, Social and
Environment

Lake Erie

CWRU &


https://mds3-coe.com
http://sdle.case.edu/

Towards a Nitrogen Circular Econom

e CASFER will enable
resilient and
sustainable food
production by

o Developing next
generation,

ASFER Mission

Concentrated Animal :
g!of Ptl)a::’ d. and Feeding Operation From Nitrogen Cycle  \ "caster engineored
Istributed, an (CAFOs) Pollution to Nitrogen System
’?efgf?r:?)?otgy Circular Economy (NCE)

m For capturing,
recycling, and
producing

NBF %

oA o Georgia :
CCCCCCCCCC TEXAS TECH

M[ '''''''''' ] Gl" Tech. vvivevsine

CWRU &
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Spatiotemporal Predictive Modeling : Goal

Develop spatiotemporal - T

models to predict nutrients
distribution in watershed
Understand and rank factors

controlling flow of N and P:
e Rain, wind, crops, soil - "

Concentrated N & P: Move to Container 2

type, type of fertilizer,
elevation, CAFOS,
practices of applications

e Type of crops, type of
animals, etc

CWRU &
otz rench © 2023 https://mds3-coe.com http://sdle.case.edu DE-NA0004104
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Challenges of Geospatial Multimodal data

Data_ Storage Data Volume Computational Data _
Integration K Resources Heterogeneity

) =

=l R o =R

T o 2. Geospatial Multimodal 3 5

§522 Datasets o

| Qo @ Challenges i

2 2 ° 8 ¢

" g

1h Coordinat : .
Scalability & Systems Georeferencing Projections Data Fusion

“ CWRU ¢ &)
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Geospatiotemporal Integration for Multimodal Datasets

The Challenge Data Integration

Integrating Spatio Temporal Stack, Mask, Resample NDVI + Historical Crop Data ol L
Multimodal Big Data (Temporal) (365 maps per crop) , (e

IBM EIS dataset Land Use with NDVI Crop Health and Growth Lt

Pre-processing Average Daily Crop Growth

= o [Eer—— ‘ Ohio: Corn,
|NDV| - H & : i il | Soybeans
b I -1 IR e = Texas: Corn, Cotton
— © ’ Florida: Orange,
2 © Sugarcane
o "; E EE—— w— Integration and Correlation
() N N D |
............................... .E 'g_ ‘
m et
: © 33 ,
_ . X =
4 datasets, different resolutions O n €
= 89
- ©
Over 1 billion data points (Texas g C I e | B ; A
only) x 365 days x 2 bands » H . With Nitrogen
© = o ' Ohio: Corn
© c E Texas:Cotton
= s 11 Florida: Orange
Featured Regions E >
Ohio, Texas and Florida a NDVI + Historical Crop + Soil
(2019) Major Two crops per state data=Spatiotemporal correlation

“CWRU & s
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Analysis of Hydrologic Features

Extraction of of River Networks

Behavior of Discharge and Nitrate + Nitrate Seasonally and Temporally

from Global Digital Elevation Models

Digital elevation map
[

Digital elevation map

Nitrate + Nitrte Levels in Winter 2019 Nitrate + Nitrite Levels in Spring 2019 Nitrate + Nitrte Levels in Summer 2019 Nitrate + Nitrte Levels in Fall 2019

G ARAERGN N
N Nitrate + Nitrite levels
8 Normal (< 4 mg/L)
@ High (<7 mg/L)
Warning (> 7 mg/L)
@ Toxic (> 10 mglL)

]

s &
Latitu
Latituc

3 2 ) h Longtuce
Longiudo L

Average Discharge per Site in Winter 2019 Average Discharge per Site in Spring 2019 Average Discharge per Site in Summer 2019 Average Discharge (ft’/s)

- 2o

uuuuu

Latiude

Behavior of Discharge and Nitrate + Nitrate Temporally
zs‘é Average Nitrate + Nitrite per day for 2019 Average Discharge per day for 2019

150

-84.5 ~84.0 ~83.5 ~83.0 ~82.5 ~82.0 815 810
Longitude

Datasets used: USGS, WQP and
GDEMs

CWRU &

100

Average Discharge (ft'/s)

. AMM e AV/\VAVVW\VAL\

VU A g

utoe . an 202 Jan 2 Apr 2 oo
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Overview of Graphical Neural Nets (GNNs)

Stream Networks PV st-GNNs

™~ I\// Node Edge

[A,B,...]
Graph T~ Features

Friend Circle Example

Purpose of GNNs in Watershed Modeling

Person Friendship e Predicting what nutrient
concentrations would be at

. . specific location
[Videos Watched,likes,.. ] e Model structure of watersheds

\ e Could give us
Features sources/quantification of nutrient
contamination

CWRU &


https://mds3-coe.com
http://sdle.case.edu/

Specialization in Geospatial Modeling

Geostatistical Geospatial

Introduction to EDA and
Descriptive Statistics

Analytics for Geostatiscal Modeling

Modeling

Course 1 : Principals
Course 2: Methods and
Cndinn

Introduction to

Conditional Simulation

Conditional Simulation and Post-Processing

Course 3: Case Studies and
Practical Examples

¥ Code
1 (

F_Top
S_Siltstone
S._Siltstone

S_siltstone

Formating the table display with
kabbleExtra package

¥ Code
1 "

> | Kriging Covariance Matrix
N_Well CXft CYf T
5001 11564 5691 N * We are able to solve for the weights by solving a system of equations

5002 10679 13706 is calculated using a modeled semi-variogram, y(h),
5003 6311 36307 . . consisting of a covariance function, C(h), and a potential nugget effect, C(0)

CWRU &

= y(h) = C(h) + C(0)
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5. XRD, 6. XCT

Automated Analysis Pipelines for 2D HEXRD

Diffraction Analysis Framework &
“Scientist Ground Truth” Deep Learning Approach

GS: Weigi Yue', Redad Mehdi', Finley Holt?

UG: Gabriel Ponon', Ethan Fang'

Postdoc: Pawan K. Tripathi?

Faculty: Vipin Chaudhary', Frank Ernst?, Matthew Willard?, Bjourn Clausen?

/' / ! Donald W. Brown?®, Daniel Savage®, Roger H. French'?

: 1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
~ 2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
8, Los Alamos National Laboratory, New Mexico, USA

NATIONAL LABORATORY

Argon ne 6 ‘@ Los Alamos

NATIONAL LABORATORY

CW RU U@:: DE-NA0004104 &) 82
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2D-HEXRD Data Analysis Challenge: Extract All Information

t,x,vy,1)

Current 2D-HEXRD Datasets
from Don Brown @ LANL
*~221TB
o~ 3.5 million 2D HEXRD images/movies ..
*Ti-6Al-4V:
oln-situ heat treatment, texture, strain
* Stainless Steel

oWire arc Additive Manufacturing
* In-situ casting of Ti-Nb

D. W. Brown et al., “Evolution of the Microstructure of Laser Powder Bed Fusion Ti-6Al-4V During Post-Build Heat Treatment,” Metall Mater Trans A, vol. 52, no. 12, pp.

CW RU g 5165-5181, Dec. 2021.
UCF

MDS?® COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/
https://dx.doi.org/10.1007/s11661-021-06455-7

2D-HEXRD Analysis Pipeline: Preprocessing & Pre-Analysis

Preprocessing and Pre-Analysis

1D Patterns

Hough
Transform

High Quality
Ellipse
Detection

A

Ellipse
Detection

~

)

J

Input Output
4 N\
Primary Step Substep
S J
2D-XRD
Image/Video
Ingestion

Data Image
FAIRIfication Preprocessing
J

Calibration

3D

[ Visualizations

Dark Current ) Artifact Image
Correction Removal Centering

)

CWRU &
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2D-HEXRD Analysis Pipeline Cont.

Preprocessing and Data Analysis
Pre-Analysis Phase Fractions
>[ Ring Location & ]
'“@W Grain Size Effects d(Ad)
R'“g Quality ] d(n) Variation for Strain

Identify Unknown Rings Structure Factor
| >[ Ellipse Detection ] )

Metric Tensor

Forward Model ) o
| (Simulation and Grain Statistics (WAXS, MIDAS)
Appllcatlon of Crystal
Models) | Texture

[ 3D Visualizations }
\/ [ Phase Evolution Input Output

[ Temporal Effects }» Grain Growth/Shrinkage s D
Primary Step Substep
Thermal Expansion Coefficients ~ ~
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XRD Analysis Example: 3-phase Phase Detection in Ti-64

Using deep learning framework
e Aim to identify B phase volume fraction

During in-situ heat-treatment of Ti-64 alloy
e At APS synchrotron 1ID XRD beamline

Ti-64 exhibit two phases
O a-phase (HCP)
O [B-phase (BCC)
e Ti-64 sample contained
O in container

Phase Detection (from set of rings) =>
The ring color indicates the crystalline phase

The blue rings are about a phase,
The pink rings are about B phase, and
The are about the

X CWRU & &)

MDS?® COE, SDLE Research Center, Roger H. French © 2023 ps://mds3-coe.com http://sdle.case.edu DE-NA0004104
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Automated XRD Phase Detection Analysis Pipeline

Image Datasets

e 10 datasets- 4 labelled & 6 Unlabelled. .
i e et Image Pre-processing
Sample Names | Number of Images | HT Temp. | Sample Description
F Labeled Datasets PEIIT] 078 T043K | LPBF-LLNL . \
PBITT2 102 TTT3K LPBELLNL e Dark correction (Subtractlon)
PB-ITTS 863 281K | LPBELLNL .
WRITT2 1703 TIT3K | WroughtIsracl PY |mage Centermg
6*Unlabeled Datasets | WR-ITTI 1079 T043K | Wrought:Isracl
WRITTS 1057 T281K | Wrought:Isracl : :
LENS-IITT 963 T043K | AM:PenState(LENS) o MUItIpIe rngs mask
EBM-HTI 1082 043K | AM:Isracl(EBM) . ]
EBMITT2 T080 TT13K AM:Isracl(EBM) ) Image reglstratlon
\ EBM-ITT3 880 281K | AM:Isracl(EBM)

[ Deep Learning: using CNNs

e CNN model predicts 8 phase volume fraction
o inexternal 2D XRD ,
Input 2D XRD Image Centering Mask Output 2D XRD
WR2
0.34 .

% e Room Temperature Translation
3 0.27 b T . .
g ; -5 o Resize SSrings
=2 0.11 i ) . )
g o SR o Pixel-wise correlation
QI' 00- T T T T T

0 300 600 900 1200

Image Sequence

CWRU &
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Ti-6Al-4V Samples & Data§ets

Sample Names | Number of Images | HT Temp. | Sample Description Y
. 3*Labeled Datasets PB-IT1 1078 T043K LPBF:LLNL
10 Ti-64 samples PBITT2 1102 113K LPBFLLNL
PB-ITT3 863 281K LPBF-LLNL
e Processed \ WR-ITT2 1103 113K Wrought:Israel )
_ : G*Unlabeled Datasets WRITT] 079 TO43K Wrought:Isracl
o Using different methods WR-IT3 1057 1281K Wrought:Isracl
o And at different facilities LENS-HT1 963 T043K AM:PenState(LENS)
_ _ EBM-HT1 1082 043K AM:Isracl(EBM)
e XRD movies acquired at CHESS EBM-IT12 T0S0 13K AM:Isracl(EBM)
EBM-HT3 880 1281K AM:Isracl(EBM)
4 labeled datasets @ ®
e (3 volume is known , | o ' '
o From Don Brown publications 025 - ™ T amll o
o Aform of “ground truth” [ ’ i
0.20 - .
6 Unlabeled (un-analyzed) datasets £ 8 o0 O
During the heat treatment, samples = o5 18 o
> >
e Heated from room temperature = L | =0T
e Held at maximum temp. for 2 hours I r’, I, ] i
e Cooled back down to room temp. 0.05 ;ﬁ —+—FEFLHD M
e Samples HT1, HT2, and HT3 F
. 0.00 — : : : : : 0.00 ~———— : : .
¢ Different max. heat treatment temp. 0 3600 7200 10800 400 600 800 1000 1200

Time at Temperature (sec.) Temperature (K)

D. W. Brown et al., “Evolution of the Microstructure of Laser Powder Bed Fusion Ti-6Al-4V During Post-Build Heat Treatment,” Metall Mater Trans A, vol. 52, no. 12, pp.

CW RU g 5165-5181, Dec. 2021.
: UCF
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Deep Learning Approach & Hyperparameter Tuning

“Neural Network Architecture Search”’ [ IR )
e Critical topic in deep learning performance 3x3 conv,8
o Major topic in Data Science today —
o  Which is the best Neural Network architecture to learn from a specific dataset? =
Trained 168 CNN architectures, with different hyperparameters Ax poous
3x3 conv,8

e Tuning CNN models’ hyper-parameters
o  Using our Distributed & HPC system CRADLE?

max pooling(2)

o  And SDLEfleets to train on GPUs in HPC Compute Nodes

3x3 conv,8

3x3 conv,16

3x3 conv,16

Models used for 2D HEXRD learning:

max pooling(2)

3x3 conv,16

e  Regression Convolutional Neural Networks (CNN)

3x3 conv,16

Training & Testing Details

A A A A A A A A A A A

[
|
[
[
[
|
m  Not using the Nvidia AISC %
[
[
[
[
[
[
[
[

e  Trained on 2D XRD datasets from three different heat treatment runs —
o  Total 2451 XRD diffractogram images ————
o ie.PB1,PB2, PB3, S
o Train: 81% (1955 images), Validation 19% (451 images) i
° Utilizing the trained CNN model to predict on a test dataset, WR-HT2 ( output [1] ]
o 1103 diffractogram images Architecture of CNN Model #30

[1] C.Yin al., “ " in Proc.36th Intl. Conf. Mach. Learning, PMLR, May 2019, pp. 7105-7114. Available: [Accessed: Oct. 15, 2023]
line Fr: rk for Pr ing of Large-Scale Building Energy Tij i

Q [2] A. Khal ac‘jy, A. M. Karimi, S. Kamath, R. Haddadian, R. H. French, and A. R. Abramson, “A Pij mew m ries Data,” PLOS ONE,
s% vol. 15, n , p- €0240461, Dec. 2020.
UCF
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General Analysis of CNN #80’s Performance
While CNN #80 has a low MSE on WR-HT2 (0.02%)

« But it performs poorly on the training set - |
 Particularly on PB3 dataset. ke
=== Training Set
PB1 Type PB3 - Validat:)n Set
0.3 * Predicted Values | I 0.021
0.24 ©  Actual Values - i §
4 { -
i e |
0 300 600 900 1200 : 1
| :
~ PB2 I
¥ 03 |
% iy ' 0501 |
2 - \ 0.00
2 0.0- -—J i 4 8 12
< 0 ) Epoch
b 0 300 600 900 1200 ! P
- w2 0.25 | Takeaway:
i ' “ ” :
02] | = . | No 1 “best” CNN Architecture
"k — | oo | For 2D XRD Analysis
0 300 600 900 1200 0 300 600 900 1200

Datasets & Models have biases
Image Sequence

CWRU &
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Robust Models on Testing and WR-HT2 Datasets

Regr. CNNs Models that perform well
e On both of the train dataset
e And WR-HT2 datasets

Selected top 15 models on the WR-HT2 datase

e And the top 15 models on the train dataset.

Nine of these 15 best performing CNN models

Were the same CNN Architectures

Indicating their robustness.

CWRU &
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5. XRD, 6. XCT

Deep Learning for 2D HEXRD

Use a Kinematic Diffraction Forward Model

For Regression CNN Training

™ GS: Weigi Yue', Redad Mehdi', Finley Holt?
UG: Gabriel Ponon', Ethan Fang'
- Postdoc: Pawan K. Tripathi?
Faculty: Vipin Chaudhary', Frank Ernst?, Matthew Willard?, Donald W.

Brown?®, Daniel Savage®, Roger H. French'?

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
0100 200 300 400 500 | 0 106 200 300 400 500 2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
d/nm d/nm 3. Los Alamos National Laboratory, New Mexico, USA

Argonne &

1% Los Alamos

NATIONAL LABORATORY

NATIONAL LABORATORY

CWRU ng DE-NA0004104 f 90

MDS? COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu
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A Forward Model to Simulate X-Ray Diffractograms

Challenges training neural networks to predict {micro}structure from diffractograms:
e No large experimental datasets for which microstructure is known
e Nor are features varied over a large range
o That are independent from other parameters
e Even “human labelled data” is not the absolute “ground-truth”
Simulation XRD data can incorporate all parameters of the
e X-ray diffractometer and the sample’s crystal structure and grain microstructure
Provides granular control over parameters we want the neural networks to learn
o Reduces need for “scientist ground truth” experimental data
e Needed for NN training, Which may not exist

Number of
Grains

Number of

Diffractograms | v v 2 : iy e 2 T
< Random Random Diffracted | Add to
' Phases | Lo B e L Phase K Orientation [ Beams _’Diffractogram

Structures |

Grains Diffractograms
Complete? Complete?

Diffractometer !

CWRU &
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Kinematic Diffraction Forward Model Pipeline for 2D HEXRD

Goal

Retrieve info from diffractograms
Replace human experimentalists
By Neural Networks (NN)
Quantify microstructure

Approach

CWRU &

Train NNs to learn information
Need: Training data

Ab-initio simulations for data
NN training

o Varying hyperparameters
Simulations verified by

o Labeled experimental data
The trained NN is then

o Applied to experimental data

[ Wave Length } (Energy Spread}

Instrument
Parameters

Number of Material
Grains Parameters

Fractions Grain Size
Distributions

Hyper
Parameters

—

>

Number of Grains

Uniform Strain

Phase Fractions

Texture

it

MDS?® COE, SDLE Research Center, Roger H. French © 2023
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Kinematic Diffraction Simulation Package

Kinematic Diffraction Simulation: (Diff-Sim)

e Sample parameters

e Mathematica paclet

o Written in Wolfram Language o Any crystal structure
e X-ray Diffractometer parameters o Any number of phases
o Wavelength of the primary beam o Grain size distribution per phase
o Beam divergence o Any texture per phase
Number of 7
Grains
Number of 7
Diffractograms v v 2 :
X ‘ Random Random Diffracted | Add to Grains Diffract s
i Phases Loon —>(iRex Ralntm > ENext O T Phase Orientation Beams _TDiffractogram Complete? lc:r::;g::;“
Structures 4 ’
Diffractometer Save

WRU

MDS? COE, SDLE Research Center, R

er H. French «

2023 https://mds3-coe.com http://sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/

Simulated Diffractograms of Ti-6AIl-4V: 0% & 100% 8 phase

For 100,000 grains in irradiated volume

©

100%a- 0% Ti 0%a- 100%B Ti
The intensity of the rings associated with the B-phase

e Increases as it's mole fraction increases

CWRU &
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Simulated Diffractograms of Ti-6Al-4V: 80% & 100% B phase

For 100,000 grains in irradiated volume

20%a- 80% Ti
As we get to pure B-Ti,
e The rings associated with the a-phase disappear and
e The entire intensity is from the [3- phase

< CWRU & s

MDS? COE, SDLE Research Center, Roger H. French © 2023 ps://mds3-coe.co p://sdle.case.edu DE-NA0004104
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Effect of Various Parameters on The Simulated Diffractograms

Effect of grain-size distribution Effect of number of grains

10% Grains y-316L X, =0.20

a-Ti Phase =0.08
Fractions ¢
Xp=0.72

nnnnn

0 100 200 300 400 500 0 100 200 300 400 500
d/nm d/nm

10° Grains 106 Grains

Ring continuity (spotiness) depends on
e The grain-size distribution
e The number of grains

CWRU &
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Effect of Microstructure Parameters on Simulated Diffractograms

Phase Xq = O 10 2000 Grains 250,000 Grains

Fractions Xg = 0.90

Grain Radius r: Probability Density

o-Ti_ _B-Ti

0.0 05 1.0 15 2.0
r (um)

Ring continuity (spotiness) depends on:

e Number of grains.

CWRU &

10,000 Grains - 50,000 Grains
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Effect of Microstructure Parameters on Simulated Diffractograms

Grain Radius r: Probability Density Grain-Size Distribution: Grain-Size Distribution: Grain Radius r: Probability Density
Narrow Wide

o-Ti_ _B-Ti

(X-Ti B;Ti
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
r (um) r (um)
Ring continuity
(spotiness)
depends on
Phase Xa=0-10

e Grain-size distribution. Fractions y, =0.90

2,000 Grains = 2,000 Grains

CWRU ¢
otz -coe.c case.edu DE-NA0004104
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B-phase Detection: Train CNN Models on Forward Model Simulation Data

Regression CNN Training & Testing Details R s | | o | | o s s
e ~5500 Diffractograms for Training | | S Y | O
O An equal Split Of ~2250 eaCh gl‘S" PB1 :::GIPBBZ WR2 PB1 :::eIPBBSB WR2 PB1 :::eIPBB: WR2
. . 2101 F

o The diffractograms are either = 'Lﬁ Ln [
a Pure o-Ti (0% B), or g = )
. Pure B-Ti (100% B) ] PB1 A PB2 PB3 K WR2 PB1 , PB2 PB3, WR2 PB1 A PB2 PB3, WR2
e ~1000 Diffractograms for Testing P | | S
O Contains data at every 50/() B_phase fraction 0 1000 2000 3000 4000 O}?Y?ggzgoggqoﬂ(;?‘%(g) 0 1000 2000 3000 4000

o So, around 50 diffractograms at every 5% [-Ti

e Construct Models With an Identical Architecture to the
o Top-performing model

o From our prior experimental datasets

CWRU &
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Performance of models with different architectures on testing set

Diffractogram in testing set is Visualize models’ performance based on:

e Sorted from 0% to 100% B mole fraction e Difference between predicted and true values
e Predicted values vs. true values

True vs. Predicted
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8 ,@’ . ' | ' ® model 44 B —— model 44
S A l ' * model 8 o G Models
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o I ® model 80 < -0.25-
o ! I |
!
0.00- . ¥ 4
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[ Inaccurate models } [ Inaccurate models }
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Neural Network Architectures & Performance of the Trained CNN Models

Model Convolutional Dense |Parameter Metric
Index layers layers number (MSE)
8 4 128-64 260 M | 0.00527
12 4 128-64-32| 260 M | 0.00522
16 5 128 126 M | 0.00833
32 6 128 520 M 0.012
44 7 128-64 129 M | 0.0231
80 9 128 125M | 0.0230

Visualization for architectures of these CNN models
Ignored two low performance models (model 28 and 44)

CWRU &
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‘Best’ Regression CNN model so far

After fine-tuning the learning rates,
e Determined that a learning rate of 1 x 10 resulted in
e Model 16 achieving its best performance

True vs. Predicted for model16 with learning rate 0.0001

1.00- e
. .-

’g [} ,.’/ —~ 02
S 0" -7 S

= 0.75 0 .-~ =

5 . .- <

E .- E

5 3 e S 00
=) 4 L S oo
2 050 — E

> ./ 1

e, S gl

9] -8 g

47 - o

T 0.25- = 1 [

® -6 <

o = -0.2

o
o
0.00- .e" @
0.00 0.25 0.50 0.75 1.00 0 250 500 750 1000
True Value (mol. frac.) Diffractogram Sequence Number

CWRU &

MDS?® COE, SDLE Research Center, Roger H. French © 2023 S: s3-coe.co ://sdle.case.edu DE-NA0004104


https://mds3-coe.com
http://sdle.case.edu/

Further Hyperparameters Tuning

Model Index MSE Batch size LR
16 0.0345 16 0.00005
16 0.00094 16 0.0001
16 0.00833 16 0.0005
16 0.0833 16 0.001
16 0.0342 16 0.005

Even for the same Neural Network architecture models,
e Different Hyperparameter settings during training
O Learning rate
o Batch size
e Affect the model’s learning and final performance

Numerous hyperparameters can be varied during the training.
e |[t's always a tradeoff between compute resource and models’ performance

CWRU &

MDS?® COE, SDLE Research Center, Roger H. French © 2023 ps://mds3-coe.co p://sdle.case.edu DE-NA0004104
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Training history curve for different learning rates
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HEXRD Analysis Takeaway

Comprehensive deep learning 2D HEXRD Diffractogram analysis pipeline
e For automated phase fraction detection

e Complex feature analysis in 2D XRD
e Can handle terabyte-level XRD datasets

Forward model simulates kinematic diffraction data
e Details for microstructure for materials (ground truth)
Hyperparameter tuning pipeline for Deep Learning Models

e Avoid invalid models
e Achieves high accuracy on external datasets
e Generates robust model architectures
Not all NN Models learn the same information from a particular dataset!

CWRU ¢ |
Ul s3-coe.c ://sdle.case.edu DE-NA0004104
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6. XCT
Automated Pipeline for X-ray Computed Tomography

Observing Pitting Corrosion of Aluminum Wires

GS: Tommy Ciardi', Maliesha Sumudmalie?
Postdoc: Pawan K. Tripathi?
Faculty: Alp Sehirlioglu?, Philip Noell®, Roger H. French'?

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA
3. Sandia National Laboratory, New Mexico, USA

Sandia

National
Laboratories

( WRU & DE-NA0004104 ) 108
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Al Wire Sample & XCT Scan Details

In-situ XCT observations of Aluminum Wire

o 0.813 mm diameter 1100 Al wire
m Commercial-purity Al
NaCl picoliter-sized droplets
Exposed to 98% RH at ~25° C
m for 122.33 hours pranbeornd
o 1.25 mm length of the wire imaged by XCT

m Over the course of the exposure

m 996 slices
o Voxel size of 1.25 ym
o Spatial resolution of 15.6 pm?3

m (2 x2x2voxels)

A total of 88 XCT datasets were collected

o Over 122.33 h (~5 days)

o At a 83 min temporal resolution

o Total number of images = 996 x 88
m = 87,648 (~100GB)

Pits
Aluminum
wire

o

o

Air

CWRU &
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Characterizing Pitting Corrosion in Al-1100 Bond-Wires

_ e b

Features of interest
e  Growth kinetics of cumulative pits
e  Growth kinetics of individual pits
e  Evolution of pit morphology

Current Approach (at Sandia)
e Manual segmentation of the pits using
o  Commercial software: Dragonfly 3D
o Based on grayscale values and location
o) Evaluate pit volume and surface area

Goal:
Build a pipeline to study pitting corrosion behavior

through a large scale XCT dataset

P. J. Noell et al., “The evolution of pit morphology and growth kinetics in aluminum during atmospheric corrosion,” npj Mater Degrad, 7, 1, 1, Feb. 2023.

CWRU &
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Pipelining Process is Great for Communicating Code

Pit Segmentation Maps

Cross-sectioned XCT
image 3D Cylindrical Pit Volume
. 3D Unwrapped Pit Volume

\ 4
/ 3D Visualization Tool
MayaVi
Semantic Segmentation Stack 2D pit Python Package
with U-Net Segmentation Maps pointextract
- - o

Evolution
3D Visualization Tool Growth Kinetics of
MayaVi Individual Pits

ey
w
e
v

.

—_—

Growth Kinetics of
Cumulative Pits

CWRU &
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U-Net Architecture for Image Segmentation

Train an U-Net model on 2D XCT
i m ag es . e Encader P gincsa N s 768 x 768 Binarized Mask

Prediction

e #training images = 293
e #epochs =100
e Batch size =4

,,,,,,,,,,,,,,,,,,,,,,,,,

SE-ResNeXt101 encoder

e Provides sufficient depth as standard
four block encoder failed

Hybrid focal & Jaccard loss

function: ﬂﬂj
e Focal: class imbalance | |
e Jaccard: loU focus R
o Intersection over Union (loU) I seorbomaian | gt
I oteneck Block [ vaooois

CWRU &
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U-Net Model Results

Model Performance Segmentation Prediction Example

I
I
: (63.6 hrs after (77 5 hrs after
I
|
I

Accuracy = 99.9 % r
Precision = 88.2 %

Recall = 90.4 % 2D XCT <
Binary loU = 79.2 % Images

—— Train
Validation

AY4

U-Net Model Loss U-Net Model loU Score

Binarized
U-Net Mask
Prediction

exposure) exposure)

ol - S & S 1 004 A~/ - o e e o o e e e . .

0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
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Segmentation Comparison

a) Raw Image b) Ground Truth c) U-Net Prediction d) Comparison

True Positives
Black True Negatives

Red False Negatives

False Positives

“CWRU ¢ &)
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Unwrapping the Cylindrical Wire, for Pit Visibility

pointextract.py
e Translates a 2D wire cross section to
a rectangular version

Applied this transformation to
e the entire 3D volume of pit segmentation maps
o generated by U-Net

XCT Image
— — Pits

Outer Surface of the Wire View

Pre-processing l

Multi-Otsu Canny Edge
Threshold Filter

— Unwrap _5 _
Least Linear Squares Visualization
Ellipse Fitting
Cross-section of the Wire View
Extract Ellipse Set Inner/Outer
Center and Axis Radlgi Bound§ Bl
Point Sampling
®Z
— —

Unwrapped Topology of Z - Along the wire’s axis

Original XCT Image

( WRU gﬁ [1] Liangyi Huang and Roger H. French, “pointextract.” 11-May-2022 [Online].
UCF
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Temporal Variations of Cumulative Pits

Cumulatlv(ep?:zll:gn:oll_:;séfver Time Number of Pits Over Time
: 40
<~ 800004
s
£ n 30
mE 60000 =
= ks
A 40000/ 20
2 =
()} >
£ 20000 Z .0
©
> . .
0- : Piecewise sigmoidaI; pattern 0- Wave-like pattern
0O 20 40 60 80 100 120 0O 20 40 60 80 100 120

Exposure Time (hour) Exposure Time (hour)
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Growth Kinetics of Individual Pits

a) Pit1 b) Pit 2
16000
200000 1
14000
175000+
1500001 12000
o @ 10000
(S 125000 1S
3 3
© 100000+ o 8000
€ =
=] =}
S 750001 S 6000
500001 4000
250001 2000
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Exposure Time (hour) Exposure Time (hour)
¢) Pit3 d) Pit 4
1750 . 8000 . ;
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1250 6000
E E
21000 3
o £ 4000
3 750 5
o o
> >
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0 0
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All 4 pits exhibit sigmoidal growth kinetics.
“CWRU & s
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Pit Morphology Evolution

Pit width and pit depth evolution over time for the largest pit

e Pit width
16071 +  Ppit depth
g Both depth & width start expanding
=120 . .
5 e from the point of nucleation
3
s % The width of the pit
5 e Is growing at a faster rate
= 40 e than its depth.
0.
0 20 40 60 80 100 120

Exposure Time (hour)

CWRU &
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Pit Morphology Evolution Over Time: Impact of Texture?

Plane of Wire’s Surface
e Yellow line

For this large pit
e Growth progresses into, and along the wire axis
e Possibly arising from the textured microstructure of the wire

CWRU &
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Visualize All the Pits

Easier to Visualize

~Summary of the Pipeline

XCT Data
Acquisition
&

B
Tomographic

Reconstruction

the Growth of the
Pits in All the

Directions

A
[ 1

3D Rendering of the

Visualization of l
Pit

All the Pits
Statistical 5 i :
Segmentauon Reconstruction Pit Depth vs Pit Determine Growth
_using U-Net. __m3® Unwrap Q"a""f'ca"ms Width ~  Kinetics of
Individual Pits

Pit Width Over Time

Pit Depth Over Time

3D Renderings of 2 !
GIF images of
individual pits l 1
L . J Pit Volume Over Cumulative Volume
Determine How Pit Time Loss Over Time
Morphology Evolved
Over Time Growth Rates (Min, Cumulative Number
Max, Average) of Pits Over Time
L r ) L - )
Determine Growth Determine Growth
Kinetics of Individual Kinetics of Cumulative

Pits Pits
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Pitting Corrosion Takeaways
Our automated pipeline has a global impact by:

e Enhanced efficiency in corrosion detection and assessment
o Reduce time and resources vs. manual inspection.

e Ability to assess the lifetimes, enhance reliability, and
o Ensure long-lasting durability of passive alloys.

e Improved maintenance and safety in infrastructure
o Allows for timely maintenance and replacement of affected components
o Reducing the risk of failures, outages, and accidents.

e Environmental impact and sustainability
o Reduce waste and the environmental footprint
o Associated with alloy components production and disposal
o By extending the lifespan of them.

CWRU &
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Deep Learning Framework for Spatiotemporal Feature Extraction

and Statistical Characterization of Terabyte-Scale XCT Datasets

CWRU

|| @ Lawrence Livermore @ Sandia i% Los Alamos /

()

UCF

National Laboratory

UN”ER“TY — B ///’VA‘ B3 CENTRAL FLORIDA

think beyond the possible

CASEWESTERNI@SERVE /| VY | 'D ,A UIVERGTY GF

National Nuclear Security A dmmlstratlon
@ KANSAS CITY

National 829 \ATIONAL LABORATORY

Laboratories

National Security Campus

GS: Tommy Ciardi',

Faculty: John Lewandowski?, Roger H. French'?

1. Department of Computer and Data Sciences, CWRU, Cleveland, OH
2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

Strengthening NNSA’s Capability to Modernize Manufacturing & Production

DE-NA0004104
MDS? COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http://sdle.case.edu

6. XCT
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The Big Picture (and Challenge)

A Materials Science Problem

How do inclusions influence stress corrosion
cracking in Al-Mg alloys in different environments?

Y

Enabled through X-ray Computed Tomography

Y

Challenge: scale of the data
e Terabytes per sample
e Outpaces the current analysis software

CWRU &

MDS® COE, SDLE Research Center, Roger H. French «

A Materials Science Domain Challenge

How do microstructural features influence temporal
changes in materials under certain conditions?

Advances in instrumentation and computational power

Challenge: scale of the data

e Order of Terabytes

e Outpaces software and infrastructure
Challenge: experimental philosophy

e Reduction of data

8)
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Experimental Background PuATES Mana

AlMg plates from HMCS Iroquois:

e Decommissioned Navy destroyer
e 1972 to 2014 in Gulf theatre, Domalia, and Caribbean Sea
® Aluminum: 5XXX rolled plates, “H116 temper, ~4.7-5.5wt% Mg

Sample Processing: ” L
e Plane N (roughly 6mm thick) < — @
360

® Exposure to sun = higher degradation
e T orientation

Slow strain-rate tension test
e Synchrotron at Diamond Light Source
o (Didcot, UK)
® Intermittent holds on load to scan XCT B8 '

[1] Burnett, T.L., Holroyd, N.J.H., Lewandowski, J.J., Ogurreck, M., Rau, C., Kelly, R., Pickering, E.J., Daly, M., Sherry, A.H., Pawar, S., Slater, T.J.A., and Withers, P.J. (2017). “Degradation of Metallic Materials Studjs
012 f

Across Time and Length Scales”, Corrosion Reviews, 37(5), pp. 469-481.

y Qﬁ Tomography”, in 38 th Riso International Symposium on Materials Science — IOP Conf. Series: Materials Science and Engineering, 219
% S [2] Gudla, V.C., Garner, A., Storm, M., Gajjar, P., Carr, J., Palmer, B.C., Lewandowski, P.J., Holroyd, N.J.H., and Burnett, T.L. (2019). “Initiation and Short Crack Growth Behavior of Environmentally Induced Cracks in AA5083-H131 Investigated'] 24
UCF
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Experimental Data from 3D XCT Scans

Series of 3D volumetric scans as 2D images in a movie through time
Each scan (one 3D image) sliced into 2110 2D .tiff images
® 12MB per image at 2510x2510 resolution = 24.7 GB per scan

< 1% RH (dry) 50% RH

Number of scans 36 77

Size 929.5 GB total (~1TB) 1949.64 GB total (~2TB)

Scale of Data:

~3TB of image data from two samples (3.4 TB of total img/non-img data)
231 subdirectories

238,430 images (239,879 files)

Previous analysis has been limited to hand selected subsets of the dataset!*!
e Data reduction problem

Q} [1] Gudla, V.C., Storm, M., Palmer, B., Lewandowski J.J., Withers, P.J., Holroyd, N.J.H, and Burnett, T. (2020). “Environmentally Induced Crack (EIC) Initiation, Propagation,
N2 SV and Failure: n-situ Time-lapse Study o - , Corrosion Science, , 10. /j.corsci. !
S d Failure: A 3D In-situ Time-| Study of AA5083-H131", Ci ion Sci 174, 10.1016/j 1.2020.108834

UCF
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Image to Scene Knowledge Learning Framework

Metadata, Ontologies \
RDF triples, JSON
(abstraction/semantics/constraints)

vvvvvvvv

rrrrrrrr

operties

... to data standardization
\ & knowledge sharing

constraints/
Scenes or st-Graphs validation
(representﬁions)
r

Deep (graph) representation learning
\«. fo inferential & predictive models /
CWRU £
UCF

validate

curate

Raw datasets
Image/videos, design data,
in-situ/ex-situ data..

cost-effective learning

Kb' ects, Observations & Pro erta\

linked
entities

(instances)

temp: 50°C
@) size:
Tumx 1 ym
-
model:
FP-2
... to create AlI/ML ready

data resources

enriched
feature(s/

Summaries & Patterns
(data regularities)

@)

/
~

A

[\

[ ¢

)4

. . . | ¢
efficient access & interpretation

correlation: 0.8

... to cost-effective data access,
\ analysis & interactive exploration /
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6. XCT

Featurization

Objects, Observations & Properties
(instances)

temp: 50°C

size:
1umx 1 um

... to create AI/ML ready
data resources

( WRU & DE-NA0004104 ) 127
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Features of Interest: Overview

Fracture
Challenge:

e [n-situ XCT imaging

o Results in low resolution
e Due to straining of sample
e Thousands of features

o Per 2D cross-section

Pore Inclusion

CWRU & 128
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Feature Extraction: Classical Image Processing

thresholding components unprocessed section

AN A
AN AN

Problem: Handcrafted features require
thousands of man hours

raw image ellipse detection

equalization object removal

Solution: Classical image processing pipelines

for semi-supervised label generation
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Feature Extraction: Deep Learning

® Image processing is parameter dependent and computationally heavy
e Deep learning networks offer robust, transferable segmentation models

Image
Processing

Deep Learning

Fracture Inclusion
Precision 0.94 0.91
Recall 0.89 0.88
Binary loU 0.92 0.89

* Comparison of UNet segmentation to image processing label.

Example failure case that
becomes solved

Raw

Image
Process

Deep
Learning

CWRU
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3D Reconstruction of Features

We can predict features on 2D cross sections

Then stack the segmentation masks to reconstruct
our features in a 3D space

Top down view of 50 slices
with labeled fracture and

Inclusion reconstruction: 50 slices

Fracture reconstruction: 250 slices inclusion
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6. XCT

Summarization

Summaries & Patterns
(data regularities)

@)

correlation: 0.8

... to cost-effective data access,
analysis & interactive exploration

( WRU & DE-NA0004104 ) ) 132
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Statistical Quantification - Summary

Quantification of defects for a full 3D XCT volume enables

Major Axis Length (px)

us to build a complete microstructural defect profile

We can query and understand our complete dataset:

Spatial: How many inclusions exist in one mm?3?

Temporal: What is the average fracture length over time?

Inclusion Volume Distribution (voxels)

count

800 . ey
Volume (voxels)

JCWRU &

count

Inclusion Feature

axis_major_length

500

(single 3D volume)

Average major axis (px)

10.978

Value

Average volume (voxel)

180.904

Volume fraction

~0.9%
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Statistical Quantification - Granular

Quantification of every individual feature Largest inclusion at timestep 25 and attributes
enables us to investigate a single defect of
interest Query profile

Query x feature for attributes of the any
100,000+ features detected

Retrieve

attributes

Inclusion Feature Value
Sl 7Sz Major axis (px) 43.01
Volume (voxels) 1340
Largest detected fracture at timestep 20 Automated extraction of 13,000,000+ total features

“ CWRU ¢ &)
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Next Steps: Spatiotemporal Scene Graphs

How can we ask more complex questions
e (E.g. do fractures tend to extend towards regions of higher defect density?)
Generate scene graphs!* for an interpretable full-scale microstructural and degradation analysis

Summary Graph Generation Spatiotemporal Scene Graph Generation
Labeled features can be turned into nodes in a graph and Scene graphs will be generated to label actions and relationships to
then edges created between corresponding nodes identify what is occurring both spatially and temporally

e S inct:&llt.’l);'on
correlation: 0.8

size:
class: 1pmx1pm
oxide

1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
crl —'——

A single graph represents one point in time, multiple
graphs can be stacked for temporal analysis

1
1
: crl: extends
1
1

cr2 - —
1

[1] Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of
spatio-temporal scene graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 10236-10247).
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Summary Graph Generation

Translating 3D feature stacks Fracture Features Value fracture embedded
and attributes into graphs as node
Major axis (px) 43.01
Volume (voxels) 1340 ‘
Orientation intergranular [43.01, 1340, 1]

' O
o . '
o O
:‘; .
O
input for graph

density based graph for neural networks
clustering timestep 32

Gevp
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Summary Graph Example: Fractures for a Single Timestep

Graph Representation

Full 3D volume

cluster of fractures

Timestep 54

Fractures only

15602 nodes (fractures)
isolated fracture

198151 edges

CWRU &
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Generative Graph Representations

timestep 1 timestep 2

Given t,...t
e predict graph representation for t,

© inclusion

@ fracture

CWRU &
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Spatiotemporal Feature Extraction Framework for Large-Scale XCT Datasets

Grand Challenge Semi-supervised Deep Learning 3D Defect Reconstruction Spatiotemporal Feature Profile

Framework to analyze full
Tera/Petabyte scale datasets

exemplar dataset

stress corrosion cracking in Al:Mg
alloy creep test in synchrotron

2 samples = 3 TB data
240,000 2D cross sections

features of interest

fracture - inclusion - pore

image processing and zero-shot
learning annotations

semi-supervised label pipeline

NN
NN
N

deep
learning
model .

robust

feature
extraction

trained deep
learning model

feature
segmentation

mapping

stack feature maps

filter spatial inconsistencies

defect volumes

Sample-level Insights

Major Axis Length (px)

Defect-level Granularity

spatiotemporal quantification of
over 13,000,000 defects

CWRU &
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Conclusions: Lets Collaborate on Materials Data Science !

Al/ML for Materials Data Science needs D/HPC Computing
e Needs the integration of “Scaled Out & Scaled Up” Computing
CRADLE: Common Research Analytics & Data Lifecycle Environment
e Automated pipelines, FAIRIfication, Efficient Insights
e Broadly Applicable
CRADLE represents a different mind-set on how to do Materials Science
e Don'tinitially simplify, and constrain variables
e Collect all the data
e Analyze ALL the data
e Then summarize it, using Graphs

Data Centric Al presents humans with a grand opportunity
e Augmenting human reasoning; Working alongside human researchers
e Scientific investigations restructured around the “salient human tasks”
e \With computers handling the routine and onerous tasks
e Supplementing our human capabilities
While reducing use of reductionist approaches in scientific research

CWRU &
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Conclusions: Al Represents an Inflection Point for Science!

Al/ML for Materials Data Science needs D/HPC Computing
e Needs the integration of “Scaled Out & Scaled Up” Computing
CRADLE: Common Research Analytics & Data Lifecycle Environment
e Low barriers to entry for scientists
e Broadly Applicable: Automated pipelines, FAIRIfication, Efficient Insights
e While Introducing State-of-the-art Data Management, AI/ML, and Scientific Workflows

CRADLE represents a different mind-set on how to do Materials Science
e FAIRIfied Datasets and FAIRfied Models enable automated Al Materials Science
e Don'tinitially simplify, and constrain variables
e Analyze ALL the data
e Then summarize it, using Graphs

Data Centric Al presents humans with a grand opportunity
Augmenting human reasoning; Working alongside human researchers
Scientific investigations restructured around the “salient human tasks”
With computers handling the routine and onerous tasks

([
([
([
e Supplementing our human capabilities
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1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

CASE SCHOOL
OF ENGINEERING

I (CASE WESTERN RESERVE
UNINVERSITY

4CWRU & St/coE |/
UCF MDS? COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http:/sdle.case.edu



https://mds3-coe.com
http://sdle.case.edu/

