TMS AIM 2024, June 16–20

Hilton, Cleveland Downtown, Ohio – On June 16–20, 2024, our team attended the The 2nd World Congress on Artificial Intelligence in Materials and Manufacturing (TMS AIM 2024), where we delivered several presentations and engaged in discussions. See below summary of our presentations for more details.

A FAIR-framework to Enhance Data Interoperability in Advanced Manufacturing Multimodal Data Sets

H.H. Aung, K.J. Hernandez, A. Harding Bradley, B. Priyan Rajamohan, J. Gordon, A. Nihar, J.C. Jimenez, B. Giera, Y. Wu, E.I. Barcelos, R.H. FRENCH, and L.S. Bruckman, “A FAIR-framework to Enhance Data Interoperability in Advanced Manufacturing Multimodal Data Sets,” Jun. 2024.

Application of Data-driven Digital Twins in Advanced Manufacturing

Kristen J. Hernandez, Ben Pierce, Hein Htet Aung, Jayvic Cristian Jimenez, Pawan Tripathi, Jean-Baptiste Forien, Brian Giera, Ibo Matthews, Roger H. French, John Lewandowski, and Laura S. Bruckman, “Application of Data-driven Digital Twins in Advanced Manufacturing,” Jun. 2024.

A Materials Data Segmentation Garden for Benchmarking Segmentation Models

Maliesha S. Kalutotage, Pawan Tripathi, Tommy Ciardi, Mingjian Lu, Kristen Hernandez, Max Ligett, Andrew Ballen, Jean-Baptiste Forien, Brian Giera, Manyalibo Matthews, Mengjie Li, Kristopher Davis, John Lewandowski, Laura Bruckman, Yinghui Wu, Roger French, and Vipin Chaudhary, “A Materials Data Segmentation Garden for Benchmarking Segmentation Models,” Jun. 2024.

Extreme Value Statistics Analysis of Process Defects in Additive Manufacturing Materials

A.E. Olatunde, K.J. Hernandez, A. Ngo, A. Nihar, T. Ciardi, R. Yamamoto, P.K. Tripathi, R.H. FRENCH, J.J. Lewandowski, and A. Mondal, “Extreme Value Statistics Analysis of Process Defects in Additive Manufacturing Materials,” Jun. 2024.

Uncertainty quantification in  machine-learning models for predicting β-phase volume fraction from synchrotron X-ray diffraction patterns

A.E. Olatunde, W. Yue, P.K. Tripathi, R.H. FRENCH, and A. Mondal, “Uncertainty quantification in  machine-learning models for predicting β-phase volume fraction from synchrotron X-ray diffraction patterns,” Jun. 2024.

Uncertainty quantification in  machine-learning models for predicting β-phase volume fraction from synchrotron X-ray diffraction patterns

A.E. Olatunde, W. Yue, P.K. Tripathi, R.H. FRENCH, and A. Mondal, “Uncertainty quantification in  machine-learning models for predicting β-phase volume fraction from synchrotron X-ray diffraction patterns,” Jun. 2024.

AI for Science: Data-centric AI by Utilizing D/HPC and FAIRified Scientific Analysis Workflows

Roger H. French, Arafath Nihar, Thomas Ciardi, Rachel Yamamoto, Erika I. Barcelos, Balashanmuga Priyan Rajamohan, Alexander Harding Bradley, Rounak Chawla, Pawan K. Tripathi, Vipin Chaudhary, Laura S. Bruckman, and Yinghui Wu, “AI for Science: Data-centric AI by Utilizing D/HPC and FAIRified Scientific Analysis Workflows,” Jun. 2024.

Spatiotemporal Scene Graph Representations for Terabyte Scale  X-Ray Computed Tomography Datasets for Creep of Al-Mg 5000 Alloys

Roger H. French, Thomas G. Ciardi, Benjamin Palmer, and John J. Lewandowski, “Spatiotemporal Scene Graph Representations for Terabyte Scale  X-Ray Computed Tomography Datasets for Creep of Al-Mg 5000 Alloys,” Jun. 2024.

Knowledge Management of Historical Data: Ontology for Chemical Reactions & Characterizations

Q.D. Tran, A.H. Bradley, B.P. Rajamohan, J. Gordon, E.I. Barcelos, K. Li, H. Caldwell, Y.J. Jo, Y. Wu, L.S. Bruckman, and R.H. French, “Knowledge Management of Historical Data: Ontology for Chemical Reactions & Characterizations,” Jun. 2024.

A Modular Framework for the Analysis of Microscopy Datasets

S.N. Venkat, T. Ciardi, J. Augustino, Q.D. Tran, J. Lai, F. Ernst, C.A. Orme, L.S. Bruckman, Y. Wu, and R.H. French, “A Modular Framework for the Analysis of Microscopy Datasets,” Jun. 2024.

A Materials Data Segmentation Benchmark (MDSB)

Vipin Chaudhary, Pawan Tripathi, Maliesha S. Kalutotage, Kristen Hernandez, Tommy Ciardi, Mingjian Lu, Max Ligett, Andrew Ballen, Jean-Baptiste Forien, Brian Giera, Manyalibo Matthews, Mengjie Li, Kristopher Davis, John Lewandowski, Laura Bruckman, Yinghui Wu, and Roger French, “A Materials Data Segmentation Benchmark (MDSB),” Jun. 2024.

Federated Learning Approaches: Data-decentralized Analysis on  Synchrotron X-ray Diffraction Data

Weiqi Yue, Mohommad Redad Mehdi, Gabriel Ponon, Pawan K. Tripathi, Vipin Chaudhary, Donald W. Brown, Roger  H. French, and Erman Ayday, “Federated Learning Approaches: Data-decentralized Analysis on  Synchrotron X-ray Diffraction Data,” Jun. 2024.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback