Publications

april 2025

Materials Data Science Ontology(MDS-Onto): Unifying Domain Knowledge in Materials and Applied Data Science

Rajamohan, B.P., Bradley, A.C.H., Tran, V.D. et al. Materials Data Science Ontology(MDS-Onto): Unifying Domain Knowledge in Materials and Applied Data Science. Sci Data 12, 628 (2025). https://doi.org/10.1038/s41597-025-04938-5

fEBRUARY 2025

2D-diffractogram analysis: Kinematic-diffraction simulator for
neural-network training-data generation

Redad Mehdi, Rounak Chawla, Erika I. Barcelos, Matthew A. Willard, Roger H. French, Frank Ernst,
2D-diffractogram analysis: Kinematic-diffraction simulator for neural-network training-data generation,
Computational Materials Science,
Volume 252,
2025,
113777,
ISSN 0927-0256

JANUARY 2025

Geospatial modeling of near subsurface temperatures of the contiguous United States for assessment of materials degradation

Gordon, J.E., Akanbi, O.D., Bhuvanagiri, D.C. et al. Geospatial modeling of near subsurface temperatures of the contiguous United States for assessment of materials degradation. Sci Rep 15, 1053 (2025). https://doi.org/10.1038/s41598-024-85050-3

JULY 2024

Materials data science using CRADLE: A distributed, data-centric approach

Thomas G. Ciardi, Arafath Nihar, Rounak Chawla, Olatunde Akanbi, Pawan K. Tripathi, Y. Wu, V. Chaudhary, and R. H. French, “Materials data science using CRADLE: A distributed, data-centric approach,” MRS Communications, Jul. 2024, https://doi.org/10.1557/s43579-024-00616-6

L-PBF High-Throughput Data Pipeline Approach for Multi-modal Integration

K. J. Hernandez, T. G. Ciardi, R. Yamamoto, M. Lu, A. Nihar, J. C. Jimenez, P. K. Tripathi, B. Giera, J.-B. Forien, J. J. Lewandowski, R. H. French, and L. S. Bruckman, “L-PBF High-Throughput Data Pipeline Approach for Multi-modal Integration,” Integrating Materials and Manufacturing Innovation, Jul. 2024, https://doi.org/10.1007/s40192-024-00368-0

JUNE 2024

Image-Based Fracture Surface Defect Characterization Methods for Additively Manufactured Ti-6Al-4V Tested in Fatigue

A. Ngo, K. Hernandez, A. E. Olatunde, T. G. Ciardi, A. Harding, A. Nifar, A. Mondal, R. H. French, L. S. Bruckman, and J. J. Lewandowski, “Image-Based Fracture Surface Defect Characterization Methods for Additively Manufactured Ti-6Al-4V Tested in Fatigue,” JOM, Jun. 2024, https://doi.org/10.1007/s11837-024-06655-7

MAY 2024

Exploring 2D X-ray diffraction phase fraction analysis with convolutional neural networks: Insights from kinematic-diffraction simulations

W. Yue, M. R. Mehdi, P. K. Tripathi, M. A. Willard, F. Ernst, and R. H. French, “Exploring 2D X-ray diffraction phase fraction analysis with convolutional neural networks: Insights from kinematic-diffraction simulations,” MRS Advances, May 2024, https://doi.org/10.1557/s43580-024-00862-9

A Data Integration Framework of Additive Manufacturing Based on Fair Principles

Kristen J. Hernandez, Erika I. Barcelos, Jayvic C. Jimenez, Arafath Nihar, Pawan K. Tripathi, Brian Giera, Roger H. French, and Laura S. Bruckman, “A Data Integration Framework of Additive Manufacturing Based on Fair Principles,” MRS Advances, May 2024, https://doi.org/10.1557/s43580-024-00874-5

APRIL 2024

Towards a study protocol: A data-driven workflow to identify error sources in direct ink write mechatronics

H. H. Aung, J. C. Jimenez, B. Au, P. Caviness, R. Cerda, Q. D. Tran, P. Tripathi, B. Giera, R. H. French, and L. S. Bruckman, “Towards a study protocol: A data-driven workflow to identify error sources in direct ink write mechatronics,” MRS Advances, Apr. 2024, https://doi.org/10.1557/s43580-024-00846-9

MARCH 2024

Phase Identification in Synchrotron X-ray Diffraction Patterns of Ti–6Al–4V Using Computer Vision and Deep Learning

Yue, W., Tripathi, P.K., Ponon, G. et al. Phase Identification in Synchrotron X-ray Diffraction Patterns of Ti–6Al–4V Using Computer Vision and Deep Learning. Integrating Materials and Manufacturing Innovation 13, 36–52 (2024). https://doi.org/10.1007/s40192-023-00328-0

A General Materials Data Science Framework for Quantitative 2D Analysis of Particle Growth from Image Sequences

S. Nalin Venkat, T. G. Ciardi, M. Lu, P. C. DeLeo, J. Augustino, A. Goodman, J. C. Jimenez, A. Mondal, F. Ernst, C. A. Orme, Y. Wu, R. H. French, and L. S. Bruckman, “A General Materials Data Science Framework for Quantitative 2D Analysis of Particle Growth from Image Sequences,” Integrating Materials and Manufacturing Innovation, vol. 13, no. 1, pp. 71–82, Mar. 2024, https://doi.org/10.1007/s40192-024-00342-w

dECEMBER 2023

Accelerating Time to Science using CRADLE: A Framework for Materials Data Science

Arafath Nihar, Thomas Ciardi, Rounak Chawla, Olatunde D. Akanbi, Vipin Chaudhary, Yinghui Wu, and Roger H. French. “Accelerating Time to Science Using CRADLE: A Framework for Materials Data Science.” Goa, India: IEEE, 2023. https://doi.org/10.1109/HiPC58850.2023.00041.

Materials Data Science Using CRADLE: A Distributed, Data-centric Approach

Thomas G. Ciardi, Arafath Nihar, Rounak Chawla, Pawan K. Tripathi, Yinghui Wu, Vipin Chaudhary, and Roger H. French. “Materials Data Science Using CRADLE: A Distributed, Data-Centric Approach.” MRS Communications, December 11, 2023.

Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images

Lu, Mingjian, Sameera Nalin Venkat, Jube Augustino, David Meshnick, Jayvic Cristian Jimenez, Pawan K. Tripathi, Arafath Nihar, et al. “Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images.” Integrating Materials and Manufacturing Innovation 12, no. 4 (December 1, 2023): 371–85. https://doi.org/10.1007/s40192-023-00320-8.

Enhancing Scientific Image Classification through Multimodal Learning: Insights from Chest X-Ray and Atomic Force Microscopy Datasets

Meshnick, David C., Nahal Shahini, Debargha Ganguly, Yinghui Wu, Roger H. French, and Vipin Chaudhary. “Enhancing Scientific Image Classification through Multimodal Learning: Insights from Chest X-Ray and Atomic Force Microscopy Datasets.” In 2023 IEEE International Conference on Big Data (BigData), 2211–20, 2023. https://doi.org/10.1109/BigData59044.2023.10386478.

Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback
Feedback